亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    已知函數(shù)f(x)=ax-lnx,,它們的定義域都是(0,e],其中e≈2.718,a∈R
    ( I)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
    ( II)當(dāng)a=1時,對任意x1,x2∈(0,e],求證:
    ( III)令h(x)=f(x)-g(x)•x,問是否存在實數(shù)a使得h(x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.
    【答案】分析:( I)當(dāng)a=1時,代入函數(shù)f(x)的解析式,求出其導(dǎo)數(shù),利用導(dǎo)數(shù)求出它的單調(diào)區(qū)間,
    ( II)當(dāng)a=1時,對任意x1,x2∈(0,e],要證明成立,只需要求出函數(shù)f(x)的最小值,與函數(shù)的最大值,用函數(shù)f(x)的最小值減去函數(shù)的最大值令它們的差與比較即可,
    ( III)求得h(x)的解析式,對其求導(dǎo),根據(jù)實數(shù)a的取值范圍研究函數(shù)的單調(diào)性,求出它的最小值,令其為3,解此方程求a的可能取值即可,若能求出,則說明存在,否則說明不存在.
    解答:解:( I) 當(dāng)a=1時,f(x)=x-lnx,x∈(0,e]

    令f'(x)>0∴1<x<e令f'(x)<0∴0<x<1
    ∴f(x)的單調(diào)增區(qū)間為(1,e),減區(qū)間為(0,1)
    ( II)由( I)知f(x)在(0,e]的最小值為f(1)=1
    g'(x)≥0在區(qū)間(0,e]上成立
    ∴g(x)在(0,e]單調(diào)遞增,故g(x)在區(qū)間(0,e]上有最大值
    要證對任意x1,x2∈(0,e],
    即證
    即證,即證e>2.7
    故命題成立
    ( III)h(x)=f(x)-g(x)•x=ax-2lnx,x∈(0,e]

    (1)當(dāng)a=0時,h'(x)<0,∴h(x)在(0,e]單調(diào)遞減,
    故h(x)的最小值為h(e)=-2,舍去
    (2)當(dāng)a>0時,由h'(x)<0,得
    ①當(dāng)時,,
    ∴h(x)在(0,e]單調(diào)遞減,故h(x)的最小值為h(e)=ae-2=3,
    ,舍去
    ②當(dāng)時,,
    ∴h(x)在單調(diào)遞減,在單調(diào)遞增,
    故h(x)的最小值為,,滿足要求
    (3)當(dāng)a<0時,h'(x)<0在(0,e]上成立,
    ∴h(x)在(0,e]單調(diào)遞減,故h(x)的最小值為h(e)=ae-2=3∴,舍去
    綜合上述,滿足要求的實數(shù)
    點評:本題考查利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)間上的最值,求解此類問題的關(guān)鍵是求出其導(dǎo)數(shù),利用導(dǎo)數(shù)研究清楚函數(shù)的單調(diào)性確定出函數(shù)的最值在那里取到,然后計算出其最值,求解本題正確轉(zhuǎn)化很關(guān)鍵,如第二小題中將問題轉(zhuǎn)化為最小值與最大值的差大于,第三問中令最小值等于3建立方程求參數(shù)的值,轉(zhuǎn)化化歸是數(shù)學(xué)中的一個重要數(shù)學(xué)思想,在高中數(shù)學(xué)解題中經(jīng)常用到,要注意此思想在本題中應(yīng)用方法與規(guī)律,作為以后解題的借鑒.本題中也用到了分類討論的思想,由此本題思維含量大,運算量大,解題難度較大,求解時要認(rèn)真嚴(yán)謹(jǐn),莫因馬虎致錯.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=
    a-x2
    x
    +lnx  (a∈R , x∈[
    1
    2
     , 2])

    (1)當(dāng)a∈[-2,
    1
    4
    )
    時,求f(x)的最大值;
    (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
    34
    的解集為
    (-∞,-2)
    (-∞,-2)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
    2x
    )>3

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
    (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
    (2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
    f(x)   ,  x>0
    -f(x) ,    x<0
     給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
     

    查看答案和解析>>

    同步練習(xí)冊答案