已知數(shù)列滿足
(
為常數(shù)),
成等差數(shù)列.
(Ⅰ)求p的值及數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列滿足
,證明:
.
(Ⅰ),
;(Ⅱ)詳見解析.
解析試題分析:(Ⅰ)利用成等差數(shù)列.可求p的值,再用累加法求數(shù)列的通項公式;(Ⅱ)通過作差判斷數(shù)列的單調(diào)性或利用數(shù)學(xué)歸納法進行證明.
試題解析:(Ⅰ)由
得
∵成等差數(shù)列,
∴
即得
(2分)
依題意知,
當時,
相加得
∴
∴ (4分)
又適合上式, (5分)
故 (6分)
(Ⅱ)證明:∵∴
∵ (8分)
若則
即當時,有
(10分)
又因為 (11分)
故 (12分)
(Ⅱ)法二:要證
只要證 (7分)
下面用數(shù)學(xué)歸納法證明:
①當時,左邊=12,右邊=9,不等式成立;
當時,左邊=36,右邊=36,不等式成立. (8分)
②假設(shè)當時,
成立. (9分)
則當時,左邊=4×3k+1=3×4×3k≥3×9k2,
要證3×9k2≥9(k+1)2,
只要正3k2≥(k+1)2,
即證2k2-2k-1≥0. (10分)
而當k即
且
時,上述不等式成立. (11分)
由①②可知,對任意,所證不等式成立. (12分)
考點:1.等差中項;2.累加法求和;3.數(shù)列單調(diào)性;4.數(shù)學(xué)歸納法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前
項和為
,且
是
和
的等差中項,等差數(shù)列
滿足
,
.
(1)求數(shù)列、
的通項公式;
(2)設(shè),數(shù)列
的前
項和為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前n項和為
,
和
滿足等式
(Ⅰ)求的值;
(Ⅱ)求證:數(shù)列是等差數(shù)列;
(Ⅲ)若數(shù)列滿足
,求數(shù)列
的前n項和
;
(Ⅳ)設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項均為正數(shù)的兩個無窮數(shù)列、
滿足
.
(Ⅰ)當數(shù)列是常數(shù)列(各項都相等的數(shù)列),且
時,求數(shù)列
的通項公式;
(Ⅱ)設(shè)、
都是公差不為0的等差數(shù)列,求證:數(shù)列
有無窮多個,而數(shù)列
惟一確定;
(Ⅲ)設(shè),
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是首項為1,公差為
的等差數(shù)列,數(shù)列
是首項為1,公比為
的等比
數(shù)列.
(1)若,
,求數(shù)列
的前
項和;
(2)若存在正整數(shù),使得
.試比較
與
的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
下面四個圖案,都是由小正三角形構(gòu)成,設(shè)第n個圖形中所有小正三角形邊上黑點的總數(shù)為.
圖1 圖2 圖3 圖4
(1)求出,
,
,
;
(2)找出與
的關(guān)系,并求出
的表達式;
(3)求證:(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的通項公式為,從數(shù)列{an}中依次取出a1,a2,a4,a8,…,
,…,構(gòu)成一個新的數(shù)列{bn},求{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{}的前n項和
,數(shù)列{
}滿足
=
.
(I)求證數(shù)列{}是等差數(shù)列,并求數(shù)列{
}的通項公式;
(Ⅱ)設(shè),數(shù)列{
}的前n項和為Tn,求滿足
的n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
)已知數(shù)列是等差數(shù)列,其前n項和為
,
,
(I)求數(shù)列的通項公式;
(II)設(shè)p、q是正整數(shù),且p≠q. 證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com