亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    已知的導(dǎo)函數(shù),且,設(shè),

    (Ⅰ)討論在區(qū)間上的單調(diào)性;
    (Ⅱ)求證:;
    (Ⅲ)求證:

    減 , 和增 ;(2)(3)詳見解析

    解析試題分析:(Ⅰ)利用 的導(dǎo)函數(shù)找到原函數(shù)即可研究 的單調(diào)性, (Ⅱ)把證明不等式轉(zhuǎn)化為證明不等式 ,然后通過求導(dǎo)研究函數(shù)的值域, (Ⅲ)難點①轉(zhuǎn)化,②注意運用第(Ⅱ)問產(chǎn)生的新結(jié)論.導(dǎo)致③放縮后進(jìn)行數(shù)列求和.
    試題解析:(Ⅰ)由 且 得. 定義域為 
     
     ,得 或  
    當(dāng) 時,由,得 ;由 ,得,或
     在 上單調(diào)遞減,在 和 上單調(diào)遞增.
    當(dāng) 時, 由,得 ;由 ,得,
     在 上單調(diào)遞減,在上單調(diào)遞增.
    (Ⅱ)設(shè) ,令 ,得, ,得,
     在 上單調(diào)遞減,在上單調(diào)遞增.
     在 處有極大值,即最大值0, 同理可證 , 即 
    (Ⅲ)由(2)知,



    當(dāng)時取等號.
    考點:導(dǎo)數(shù)運算及運用導(dǎo)數(shù)研究函數(shù)的性質(zhì),數(shù)列求和及不等式中的放縮法的運用.

    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù)
    (1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
    (Ⅱ)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
    (Ⅲ)求證:,e是自然對數(shù)的底數(shù)).
    提示:

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知處取得極值。
    (Ⅰ)證明:;
    (Ⅱ)是否存在實數(shù),使得對任意?若存在,求的所有值;若不存在,說明理由。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù).
    (1) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
    (2) 當(dāng)時,函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù),點為一定點,直線分別與函數(shù)的圖象和軸交于點,,記的面積為.
    (I)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
    (II)當(dāng)時, 若,使得, 求實數(shù)的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知.
    (1)求的極值,并證明:若;
    (2)設(shè),且,證明:
    ,由上述結(jié)論猜想一個一般性結(jié)論(不需要證明);
    (3)證明:若,則.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    函數(shù)
    (1)當(dāng)時,對任意R,存在R,使,求實數(shù)的取值范圍;
    (2)若對任意恒成立,求實數(shù)的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    設(shè)函數(shù)(其中).
    (Ⅰ) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
    (Ⅱ) 當(dāng)時,求函數(shù)上的最大值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù)
    (Ⅰ)求的單調(diào)區(qū)間;
    (Ⅱ)求在區(qū)間上的最值

    查看答案和解析>>

    同步練習(xí)冊答案