【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為萬元,每生產(chǎn)
千件需另投入
萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝
千件并全部銷售完,每千件的銷售收入為
萬元,且
.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入-年總成本)
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)設(shè)函數(shù),若
在
上存在極值,求
的取值范圍,并判斷極值的正負.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①函數(shù)是奇函數(shù);
②將函數(shù)的圖像向左平移
個單位長度,得到函數(shù)
的圖像;
③若是第一象限角且
,則
;
④是函數(shù)
的圖像的一條對稱軸;
⑤函數(shù)的圖像關(guān)于點
中心對稱。
其中,正確的命題序號是______________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地擬規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計成半徑為1km的扇形,中心角
(
).為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴建成正方形
,其中點
,
分別在邊
和
上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.
(1)要使觀賞區(qū)的年收入不低于5萬元,求的最大值;
(2)試問:當為多少時,年總收入最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的焦距為
,斜率為
的直線與橢圓交于
兩點,若線段
的中點為
,且直線
的斜率為
.
(1)求橢圓的方程;
(2)若過左焦點斜率為
的直線
與橢圓交于點
為橢圓上一點,且滿足
,問:
是否為定值?若是,求出此定值,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
且
.
(1)若函數(shù)在
上恒有意義,求
的取值范圍;
(2)是否存在實數(shù),使函數(shù)
在區(qū)間
上為增函數(shù),且最大值為
?若存在求出
的值,若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于函數(shù),有下列結(jié)論:
①的定義域為(-1, 1); ②
的值域為(
,
);
③的圖象關(guān)于原點成中心對稱; ④
在其定義域上是減函數(shù);
⑤對的定義城中任意
都有
.
其中正確的結(jié)論序號為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線
過點
,其參數(shù)方程為
(
為參數(shù),
),以
為極點,
軸非負半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)求已知曲線和曲線
交于
兩點,且
,求實數(shù)
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com