(滿分12分)如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
(1)求證:AB1⊥平面A1BD;
(2)求二面角A-A1D-B的余弦值;
(3)求點(diǎn)C1到平面A1BD的距離.
(1)見(jiàn)解析;(2) .(3)
.
【解析】本題可以用空間向量法求解.第一步建系至關(guān)重要.取BC中點(diǎn)O,連結(jié)AO.∵△ABC為正三角形,∴AO⊥BC.∵在正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1,∴AO⊥平面BCC1B1.取B1C1中點(diǎn)O1,以O為原點(diǎn),的方向?yàn)?i>x,y,z軸的正方向建立空間直角坐標(biāo)系.(1)根據(jù)向量垂直的坐標(biāo)運(yùn)算法則證明
即可.
(2)設(shè)平面A1AD的法向量為,再根據(jù)
,得到x,y,z之間的等式關(guān)系,進(jìn)而得到一個(gè)滿足條件的法向量,再根據(jù)
求解即可.
(3)利用向量求距離:.
證明:(1)取BC中點(diǎn)O,連結(jié)AO.∵△ABC為正三角形,∴AO⊥BC.
∵在正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1,∴AO⊥平面BCC1B1.
取B1C1中點(diǎn)O1,以O為原點(diǎn),的方向?yàn)?i>x,y,z軸的正方向建立空間直角坐標(biāo)系,則B(1,0,0),D(-1,1,0),A1(0,2,
),A(0,0,
),B1(1,2,0),
∴.
∴
∴,∴AB1
平面A1BD.
(2)設(shè)平面A1AD的法向量為.
=(-1,1,-
),
=(0,2,0).
∵,
∴
令z=1得n=(-,0,1)為平面A1AD的一個(gè)法向量.
由(1)知AB1⊥平面A1BD,為平面A1BD的法向量.
.
∴二面角A-A1D-B的大小的余弦值為.
(3)C1點(diǎn)到A1BD的距離為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題
(本題滿分12分)
如圖3,在圓錐中,已知
的直徑
的中點(diǎn).
(I)證明:
(II)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年深圳市高三第一次調(diào)研考試數(shù)學(xué)文卷 題型:解答題
(本題滿分12分)
如圖,有一正方形鋼板缺損一角(圖中的陰影部分),邊緣線
是以直線AD為對(duì)稱軸,以線段
的中點(diǎn)
為頂點(diǎn)的拋物線的一部分.工人師傅要將缺損一角切割下來(lái),使剩余的部分成為一個(gè)直角梯形.若正方形的邊長(zhǎng)為2米,問(wèn)如何畫(huà)切割線
,可使剩余的直角梯形的面積最大?并求其最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年深圳市高三第一次調(diào)研考試數(shù)學(xué)文卷 題型:解答題
(本小題滿分12分)
如圖,在四棱錐中,
,
,
,平面
平面
,
是線段
上一點(diǎn),
,
,
.
(1)證明:平面
;
(2)設(shè)三棱錐與四棱錐
的體積分別為
與
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:岳陽(yáng)市2010屆高三第四次質(zhì)檢考試(數(shù)學(xué)文)試題 題型:解答題
(本小題滿分12分)
如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=PA=a,點(diǎn)O、D分別是AC、PC的中點(diǎn),OP⊥底面ABC。
(1)求三棱錐P-ABC的體積;
(2)求異面直線PA與BD所成角余弦值的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆貴州省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分)如圖,在棱長(zhǎng)為2的正方體的中點(diǎn),P為BB1的中點(diǎn).
(I)求證;
(II)求異面直線所成角的大;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com