亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    為常數(shù),已知函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).
    (1)設為函數(shù)的圖像上任意一點,求點到直線的距離的最小值;
    (2)若對任意的恒成立,求實數(shù)的取值范圍.

    (Ⅰ).(Ⅱ)

    解析試題分析:(Ⅰ)∵在區(qū)間上是增函數(shù),
    ∴當時,恒成立,即恒成立,所以
    在區(qū)間上是減函數(shù),
    故當時,恒成立,即恒成立,所以
    綜上,
    ,得,
    ,則,而,
    所以的圖象上處的切線與直線平行,
    所以所求距離的最小值為.              (6分)
    (Ⅱ)因為,則,
    因為當時,恒成立,所以,
    因為當時,,所以上是減函數(shù),
    從而,
    所以當時,,即恒成立,所以
    因為上是減函數(shù),所以,
    從而,即,
    故實數(shù)的取值范圍是.                    (12分)
    考點:本題考查了導數(shù)運用
    點評:近幾年新課標高考對于函數(shù)與導數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對數(shù))函數(shù)的組合復合且含有參量的函數(shù)為背景載體,解題時要注意對數(shù)式對函數(shù)定義域的隱蔽,這類問題重點考查函數(shù)單調(diào)性、導數(shù)運算、不等式方程的求解等基本知識,注重數(shù)學思想(分類與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、反證法)的運用.把數(shù)學運算的“力量”與數(shù)學思維的“技巧”完美結(jié)合

    練習冊系列答案
    相關(guān)習題

    科目:高中數(shù)學 來源: 題型:解答題

    設函數(shù)f(x)=(1+x)2-2ln (1+x).
    (1)求函數(shù)f(x)的單調(diào)區(qū)間;
    (2)若關(guān)于x的方程f(x)=x2xa在[0,2]上恰有兩個相異實根,求實數(shù)a的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    已知函數(shù)處取得極值.
    (1)求實數(shù)的值;
    (2)若關(guān)于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;
    (3)證明:對任意的正整數(shù),不等式都成立.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    已知的圖像在點處的切線與直線平行.
    (1)求a,b滿足的關(guān)系式;
    (2)若上恒成立,求a的取值范圍;
    (3)證明:

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    已知時有極大值6,在時有極小值
    的值;并求在區(qū)間[-3,3]上的最大值和最小值.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    已知函數(shù),若存在使得恒成立,則稱  是
    一個“下界函數(shù)” .
    (I)如果函數(shù)(t為實數(shù))為的一個“下界函數(shù)”,
    求t的取值范圍;
    (II)設函數(shù),試問函數(shù)是否存在零點,若存在,求出零點個數(shù);
    若不存在,請說明理由.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    設函數(shù).
    (I)若曲線與曲線在它們的交點處具有公共切線,求的值;
    (II)當時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求的取值范圍;
    (III)當時,求函數(shù)在區(qū)間上的最大值

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    已知函數(shù),,為常數(shù),),且這兩函數(shù)的圖像有公共點,并在該公共點處的切線相同.
    (Ⅰ)求實數(shù)的值;
    (Ⅱ)若時,恒成立,求實數(shù)的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    (本題14分)已知函數(shù)處取得極值,且在處的切線的斜率為1。
    (Ⅰ)求的值及的單調(diào)減區(qū)間;
    (Ⅱ)設>0,>0,,求證:

    查看答案和解析>>

    同步練習冊答案