亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    當(dāng)x∈R時(shí),f(x)是奇函數(shù)且f(x)不恒為零,那么x∈R時(shí),函數(shù)f(sinx)是


    1. A.
      奇函數(shù)
    2. B.
      偶函數(shù)
    3. C.
      既奇又偶
    4. D.
      非奇非偶
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    若對(duì)任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”;
    (1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
    (2)對(duì)稱性:f(x,y)=f(y,x);
    (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
    今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于x、y的廣義“距離”的序號(hào):
    ①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
    x-y

    能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號(hào)是
     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)定義在R上的函數(shù)f(x)=ax4+bx3+cx2+dx+e,當(dāng)x=-1時(shí),f(x)取得極大值
    2
    3
    ,并且函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱.
    (Ⅰ)求f(x)的表達(dá)式;
    (Ⅱ)試在函數(shù)f(x)的圖象上求兩點(diǎn),使以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切點(diǎn)的橫坐標(biāo)都在區(qū)間[-
    2
    ,
    2
    ]
    上;
    (Ⅲ)若x=
    2t-1
    2t
    ,y=
    2
    (1-3t)
    3t
    (t∈R+),求證:|f(x)-f(y)|<
    4
    3

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)為定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=log2(x+1)
    (1)當(dāng)x<0時(shí),求f(x)的解析式;
    (2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間,以及在每一個(gè)單調(diào)區(qū)間上,它是增函數(shù)還是減函數(shù),并指出f(x)的值域.(不要求證明)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:江蘇省泗陽中學(xué)2012屆高三第一次調(diào)研考試數(shù)學(xué)試題(普通班) 題型:044

    設(shè)二次函數(shù)滿足下列條件:

    ①當(dāng)x∈R時(shí),f(x)的最小值為0,且f(x-1)=f(-x-1)成立;

    ②當(dāng)x∈(0,5)時(shí),x≤f(x)≤2|x-1|+1恒成立.

    (1)求f(1)的值;

    (2)求f(x)的解析式;

    (3)求最大的實(shí)數(shù)m(m>1),使得存在實(shí)數(shù)t,只要當(dāng)x∈[1,m]時(shí),就有成立.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省廣州市執(zhí)信中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

    已知函數(shù)f(x)為定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=log2(x+1)
    (1)當(dāng)x<0時(shí),求f(x)的解析式;
    (2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間,以及在每一個(gè)單調(diào)區(qū)間上,它是增函數(shù)還是減函數(shù),并指出f(x)的值域.(不要求證明)

    查看答案和解析>>

    同步練習(xí)冊(cè)答案