直線與橢圓
交于
,
兩點,已知
,
,若
且橢圓的離心率
,又橢圓經(jīng)過點
,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點
(
為半焦距),求直線
的斜率
的值;
科目:高中數(shù)學 來源: 題型:
x2 |
25 |
y2 |
16 |
PF1 |
PF2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(09年東城區(qū)期末理)(13分)
已知橢圓的對稱軸為坐標軸,且拋物線
的焦點是橢圓
的一個焦點,又點
在橢圓
上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的方向向量為
,若直線
與橢圓
交于
、
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓的方程為
,點
的坐標滿足
過點
的直線
與橢圓交于
、
兩點,點
為線段
的中點,求:
(1)點的軌跡方程;
(2)點的軌跡與坐標軸的交點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年安徽省安慶市高三模擬考試(三模)理科數(shù)學試卷(解析版) 題型:解答題
已知焦點在軸上的橢圓
和雙曲線
的離心率互為倒數(shù),它們在第一象限交點的坐標為
,設直線
(其中
為整數(shù)).
(1)試求橢圓和雙曲線
的標準方程;
(2)若直線與橢圓
交于不同兩點
,與雙曲線
交于不同兩點
,問是否存在直線
,使得向量
,若存在,指出這樣的直線有多少條?若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2010-2011學年重慶市主城八區(qū)高三第二次學業(yè)調(diào)研抽測文科數(shù)學卷 題型:解答題
設橢圓:
的左、右焦點分別為
、
,上頂點為
,在
軸負半軸上有一點
,滿足
,且
⊥
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過、
、
三點的圓恰好與直線
相切,求橢圓
的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點作斜率為
的直線
與橢圓
交于
、
兩點,
若點使得以
為鄰邊的平行四邊形是菱形,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com