亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    設(shè)f(x)是定義在[-1,1]上的奇函數(shù),g(x)的圖象與f(x)的圖象關(guān)于直線x=1對稱,而當(dāng)x∈[2,3]時,g(x)=-x2+4x-4.
    (Ⅰ)求f(x)的解析式;
    (Ⅱ)對任意x1,x2∈[0,1],且x1≠x2,求證:|f(x2)-f(x1)|<2|x2-x1|;
    (Ⅲ)對任意x1,x2∈[0,1],且x1≠x2,求證:|f(x2)-f(x1)|≤1.
    分析:(I)根據(jù)g(x)的圖象與f(x)的圖象關(guān)于直線x=1對稱,則f(x+1)=g(1-x)即f(x)=g(2-x),從而可求出-1≤x≤0時函數(shù)f(x)的解析式,最后根據(jù)奇偶性求出函數(shù)在0<x≤1上的解析式;
    (II)當(dāng)x1,x2∈[0,1]且x1≠x2時,0<x1+x2<2,代入解析式進行化簡變形,即可證得結(jié)論;
    (III)當(dāng)x1,x2∈[0,1]且x1≠x2時,0≤x12≤1,0≤x22≤1∴-1≤x22-x12≤1即|x22-x12|≤1,即可證得結(jié)論.
    解答:解:(Ⅰ)由題意知f(x+1)=g(1-x)?f(x)=g(2-x)
    當(dāng)-1≤x≤0時,2≤2-x≤3,f(x)=-(2-x)2+4(2-x)-4=-x2
    當(dāng)0<x≤1時,-1≤-x<0∴f(-x)=-x2,
    由于f(x)是奇函數(shù)∴f(x)=x2f(x)=
    -x2(-1≤x≤0)
    x2(0<x≤1)

    (Ⅱ)當(dāng)x1,x2∈[0,1]且x1≠x2時,0<x1+x2<2,
    ∴|f(x2)-f(x1)|=|x22-x12|=|(x2-x1)(x2+x1)|<2|x2-x1|
    (Ⅲ)當(dāng)x1,x2∈[0,1]且x1≠x2時,0≤x12≤1,0≤x22≤1,
    ∴-1≤x22-x12≤1即|x22-x12|≤1.∴|f(x2)-f(x1)|=|x22-x12|≤1.
    點評:本題主要考查了函數(shù)的奇偶性,以及函數(shù)的解析式的求解和不等式的證明,同時考查了化簡轉(zhuǎn)化能力,屬于中檔題.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)f(x)是定義在R上的奇函數(shù),且y=f(x)的圖象關(guān)于直線x=
    12
    對稱,則f(1)+f(2)+f(3)+f(4)+f(5)=
     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    例2.設(shè)f(x)是定義在[-3,
    2
    ]上的函數(shù),求下列函數(shù)的定義域(1)y=f(
    x
    -2)
    (2)y=f(
    x
    a
    )(a≠0)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)f(x)是定義在R上的周期為3的周期函數(shù),如圖表示該函數(shù)在區(qū)間(-2,1]上的圖象,則f(2013)+f(2014)=( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2013•內(nèi)江一模)設(shè)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x-2)=f(x+2)且當(dāng)x∈[-2,0]時,f(x)=(
    1
    2
    x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同的實數(shù)根,則a的取值范圍是
    34
    ,2)
    34
    ,2)

    查看答案和解析>>

    同步練習(xí)冊答案