亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    設(shè)a>0,函數(shù)f(x)=,b為常數(shù).
    (1)證明:函數(shù)f(x)的極大值點和極小值點各有一個;
    (2)若函數(shù)f(x)的極大值為1,極小值為-1,試求a的值.
    【答案】分析:(1)令f′(x)=0得到ax2+2bx-a=0根據(jù)根的判別式得到方程有兩個不相等的實根設(shè)為x1,x2(x1<x2),討論函數(shù)的增減性得到函數(shù)的極大值和極小值各有一個;
    (2)因為函數(shù)f(x)的極大值為1,極小值為-1,所以將x1,x2(x1<x2)代入到函數(shù)關(guān)系式中得到兩個式子,根據(jù)根與系數(shù)的關(guān)系化簡可得a的值.
    解答:解:(1)證明f′(x)=,
    令f′(x)=0,得ax2+2bx-a=0(*)
    ∵△=4b2+4a2>0,
    ∴方程(*)有兩個不相等的實根,記為x1,x2(x1<x2),
    則f′(x)=,
    當x變化時,f′(x)與f(x)的變化情況如下表:

    可見,f(x)的極大值點和極小值點各有一個.
    (2)解:由(1)得

    兩個方程左右兩邊相加,得a(x1+x2)+2b=x22-x12
    ∵x1+x2=-,∴x22-x12=0,
    即(x2+x1)(x2-x1)=0,
    又x1<x2,
    ∴x1+x2=0,從而b=0,
    ∴a(x2-1)=0,得x1=-1,x2=1,代入得a=2.
    點評:考查學生利用導數(shù)研究函數(shù)極值的能力,以及靈活運用一元二次方程根的判別式和根與系數(shù)的關(guān)系解決數(shù)學問題的能力.
    練習冊系列答案
    相關(guān)習題

    科目:高中數(shù)學 來源: 題型:

    設(shè)a>0,函數(shù)f(x)=x2+a|lnx-1|.
    (1)當a=1時,求曲線y=f(x)在x=1處的切線方程;
    (2)當x∈[1,+∞)時,求函數(shù)f(x)的最小值.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    設(shè)a>0,函數(shù)f(x)=x3-ax在[1,+∞)上是單調(diào)函數(shù).則實數(shù)a的取值范圍為
    (0,3]
    (0,3]

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    (2012•安慶模擬)設(shè)a>0,函數(shù)f(x)=lnx-ax,g(x)=lnx-
    2(x-1)x+1

    (1)證明:當x>1時,g(x)>0恒成立;
    (2)若函數(shù)f(x)無零點,求實數(shù)a的取值范圍;
    (3)若函數(shù)f(x)有兩個相異零點x1、x2,求證:x1x2>e2

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    設(shè)a>0,函數(shù)f (x) 是定義在(0,+∞)的單調(diào)遞增的函數(shù)且f (
    axx-1
    )<f(2),試求x的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    設(shè)a>0,函數(shù)f(x)=
    12
    x2-(a+1)x+a(1+ln x)

    (1)求曲線y=f(x)在(2,f(2))處與直線y=-x+1垂直的切線方程;
    (2)求函數(shù)f(x)的極值.

    查看答案和解析>>

    同步練習冊答案