亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    設(shè)點(diǎn)P(x,y)(y≥0)為平面直角坐標(biāo)系xOy中的一個(gè)動(dòng)點(diǎn)(其中O為坐標(biāo)原點(diǎn)),點(diǎn)P到定點(diǎn)M(0,
    1
    2
    )的距離比點(diǎn)P到x軸的距離大
    1
    2

    (1)求點(diǎn)P的軌跡方程;
    (2)若直線l:y=x+1與點(diǎn)P的軌跡相交于A、B兩點(diǎn),求線段AB的長(zhǎng);
    (3)設(shè)點(diǎn)P的軌跡是曲線C,點(diǎn)Q(1,y0)是曲線C上一點(diǎn),求過(guò)點(diǎn)Q的曲線C的切線方程.
    分析:(1)用直接法或定義法求得點(diǎn)P軌跡方程.
    (2)聯(lián)立y=x+1與x2=2y化簡(jiǎn)得x2-2x-2=0,把根與系數(shù)的關(guān)系代入弦長(zhǎng)公式求出結(jié)果.
    (3)曲線C即函數(shù)y=
    x2
    2
    的圖象,利用導(dǎo)數(shù)求得切線的斜率,點(diǎn)斜式求得切線的方程.
    解答:解:(1)用直接法或定義法求得點(diǎn)P軌跡方程為x2=2y.
    (2)聯(lián)立y=x+1與x2=2y化簡(jiǎn)得x2-2x-2=0.  設(shè)A(x1,y1),B(x2,y2),則x1+x2=2,x1x2=-2,
    |AB|=
    (1+12)[(x1+x2)2-4x1x2]
    =2
    6

    (3)曲線C即函數(shù)y=
    x2
    2
    的圖象,y′=x,y′|x=1=1,又Q(1,
    1
    2
    ),
    故所求切線方程為y-
    1
    2
    =1•(x-1)即x-y-
    1
    2
    =0.
    點(diǎn)評(píng):本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,求出切線的斜率是解題的關(guān)鍵.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    設(shè)點(diǎn)P(x,y)(y≥0)為平面直角坐標(biāo)系xOy中的一個(gè)動(dòng)點(diǎn)(其中O為坐標(biāo)原點(diǎn)),點(diǎn)P到定點(diǎn)M(0,
    1
    2
    )
    的距離比點(diǎn)P到x軸的距離大
    1
    2

    (1)求點(diǎn)P的軌跡方程;
    (2)若直線l:y=kx+1與點(diǎn)P的軌跡相交于A、B兩點(diǎn),且|AB|=2
    6
    ,求k的值.
    (3)設(shè)點(diǎn)P的軌跡是曲線C,點(diǎn)Q(1,y0)是曲線C上的一點(diǎn),求以Q為切點(diǎn)的曲線C 的切線方程.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    設(shè)點(diǎn)P(x,y)(y≥0)為平面直角坐標(biāo)系xOy中的一個(gè)動(dòng)點(diǎn)(O為坐標(biāo)原點(diǎn)),點(diǎn)P到定點(diǎn)M(0,
    1
    2
    )
    的距離比點(diǎn)P到x軸的距離大
    1
    2

    (1)求點(diǎn)P的軌跡方程;
    (2)若直線l:y=kx+1與點(diǎn)P的軌跡相交于A、B兩點(diǎn),且|AB|=2
    6
    ,求k的值;
    (3)設(shè)點(diǎn)P的軌跡曲線為C,點(diǎn)Q(x0,y0)(x0≤1)是曲線C上的一點(diǎn),求以點(diǎn)Q為切點(diǎn)的曲線C的切線方程及切線傾斜角的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    (2009•大連二模)已知定點(diǎn)A(0,2),B(0,-2),C(2,0),動(dòng)點(diǎn)P滿足:
    AP
    BP
    =m|
    pc
    |2

    (I)求動(dòng)點(diǎn)P的軌跡方程,并說(shuō)明方程表示的曲線類型;
    (II)當(dāng)m=2時(shí),設(shè)點(diǎn)P(x,y)(y≥0),求
    y
    x-8
    的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2007年天津市漢沽一中高三第一次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

    設(shè)點(diǎn)P(x,y)(y≥0)為平面直角坐標(biāo)系xOy中的一個(gè)動(dòng)點(diǎn)(其中O為坐標(biāo)原點(diǎn)),點(diǎn)P到定點(diǎn)M(0,)的距離比點(diǎn)P到x軸的距離大
    (1)求點(diǎn)P的軌跡方程;
    (2)若直線l:y=x+1與點(diǎn)P的軌跡相交于A、B兩點(diǎn),求線段AB的長(zhǎng);
    (3)設(shè)點(diǎn)P的軌跡是曲線C,點(diǎn)Q(1,y)是曲線C上一點(diǎn),求過(guò)點(diǎn)Q的曲線C的切線方程.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案