亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (本小題滿分12分)如圖,四棱錐中,底面為矩形,
    底面,,點是棱的中點.
    (1)證明:平面;
    (2)若,求二面角的平面角的余弦值.
    (1)見解析;(2)
    (1)底面=.
    ⊥平面,進而確定⊥平面.
    (2)解第(2)的關(guān)鍵是判斷出為等邊三角形,為等腰直角三角形,然后取的中點,連接,確定為所求的二面角的平面角.

    (1)證明:由⊥底面,得,由=為等腰直角三角形,又點是棱的中點,故由題意知,又在面內(nèi)的射影,由三垂線定理得,從而⊥平面,因,,所以⊥平面.
    (2)解:由(1)知⊥平面,又//,得⊥平面,故.
    中,==,
    從而在,所以為等邊三角形,
    的中點,連接,則
    ==1,且,則為等腰直角三角形,連接,則,
    所以為所求的二面角的平面角.
    連接,在中,

    所以故二面角的平面角的余弦值為
    解二:(1)如圖,以為坐標原點,射線、分別為軸、軸、軸正半軸,建立空間直角坐標系.
    設(shè),則   .
    于是,
    ,所以⊥平面.
    (2)解:設(shè)平面的法向量為,由(1)知,⊥平面,
    故可取
    設(shè)平面的法向量,則,
    =1,得從而
    所以可取
    從而所以二面角的平面角的余弦值為

    練習冊系列答案
    相關(guān)習題

    科目:高中數(shù)學 來源:不詳 題型:解答題

    (本小題滿分14分)在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,滿足AE:EB=CF:FA=CP:PB=1:2(如圖1)。將△AEF沿EF折起到DA1EF的位置,使二面角A1-EF-B成直二面角,連結(jié)A1B、A1P(如圖2)

    (Ⅰ)求證:A1E⊥平面BEP;
    (Ⅱ)求直線A1E與平面A1BP所成角的大小。

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:解答題

    如圖1,在中,,D,E分別為AC,AB的中點,點F為線段CD上的一點,將沿DE折起到的位置,使,如圖2.
    (Ⅰ)求證:DE∥平面
    (Ⅱ)求證:
    (Ⅲ)線段上是否存在點Q,使?說明理由。

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:解答題

    如圖,己知平行四邊形ABCD中,∠ BAD = 600,AB=6, AD=3,G為CD中點,現(xiàn)將梯形ABCG沿著AG折起到AFEG。
    (I)求證:直線CE//平面ABF;
    (II)如果FG⊥平面ABCD求二面B一EF一A的平面角的余弦值. 
    (Ⅲ)若直線AF與平面 ABCD所成角為,求證:FG⊥平面ABCD

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:解答題

    如圖,在三棱錐中,,的中點,平面,垂足落在線段上,已知。
    (Ⅰ)證明:;
    (Ⅱ)在線段上是否存在點M,使得二面角為直二面角?若存在,求
    出AM的長;若不存在,請說明理由。(12分)

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:解答題

    如圖,在直三棱柱中, AB=1,,
    ∠ABC=60.
    (1)證明:
    (2)求二面角A——B的正切值。

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:單選題

    對于平面、和直線、、,下列命題中真命題是(   )
    A.若,則
    B.若;
    C.若,則
    D.若

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:單選題

    在陽光下將一個球放在水平面上,球的影子伸到距球與地面接觸點處,同一時刻,一個長,一端接觸地面且與地面垂直的竹竿的影子長為,則該球的半徑等于(  )
    A.B.C.D.

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:單選題

    如果OA//OA,OB//OB,那么AOB和AOB (   )
    A.相等B.互補C.相等或互補D.大小無關(guān)

    查看答案和解析>>

    同步練習冊答案