亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    【題目】已知橢圓的離心率為,且與拋物線交于,兩點(diǎn),為坐標(biāo)原點(diǎn))的面積為

    (1)求橢圓的方程;

    (2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長軸端點(diǎn))為左、右焦點(diǎn),的延長線與橢圓交于點(diǎn),的延長線與橢圓交于點(diǎn),求面積的最大值.

    【答案】(1)(2)

    【解析】

    (1)由題意求得a,b,c的值即可確定橢圓方程;

    (2)分類討論直線的斜率存在和斜率不存在兩種情況,聯(lián)立直線方程與橢圓方程,結(jié)合韋達(dá)定理和均值不等式即可確定三角形面積的最大值.

    1)橢圓與拋物線交于,兩點(diǎn),

    可設(shè),,

    的面積為

    ,解得,∴,

    由已知得,解得,,,

    ∴橢圓的方程為.

    2)①當(dāng)直線的斜率不存在時(shí),不妨取,,,故

    ②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,,,

    聯(lián)立方程,化簡得,

    ,

    ,

    點(diǎn)到直線的距離,

    因?yàn)?/span>是線段的中點(diǎn),所以點(diǎn)到直線的距離為

    ,又,所以等號(hào)不成立.

    ,

    綜上,面積的最大值為.

    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

    (1)求曲線的普通方程和直線的直角坐標(biāo)方程;

    (2)射線的極坐標(biāo)方程為,若射線與曲線的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】如圖,直三棱柱中,,分別為、的中點(diǎn).

    (1)證明:平面

    (2)若平面,求到平面的距離.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】我國南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算體積的祖暅原理:“冪勢既同,則積不容異!币馑际牵簝蓚(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.已知曲線,直線為曲線在點(diǎn)處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個(gè)幾何體:

    圖①是底面直徑和高均為的圓錐;

    圖②是將底面直徑和高均為的圓柱挖掉一個(gè)與圓柱同底等高的倒置圓錐得到的幾何體;

    圖③是底面邊長和高均為的正四棱錐;

    圖④是將上底面直徑為,下底面直徑為,高為的圓臺(tái)挖掉一個(gè)底面直徑為,高為的倒置圓錐得到的幾何體.

    根據(jù)祖暅原理,以上四個(gè)幾何體中與的體積相等的是( )

    A. B. C. D.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】已知函數(shù).

    (1)求不等式的解集;

    (2)若不等式的解集為空集,求實(shí)數(shù)的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】在三棱錐中,G的重心,過點(diǎn)G作三棱錐的一個(gè)截面,使截面平行于直線PBAC,則截面的周長為_________.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題,大概意思如下:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為l尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸)( )

    A. 3寸B. 4寸C. 5寸D. 6寸

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】已知函數(shù)

    (1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的極值;

    (2)設(shè)函數(shù).當(dāng)=時(shí),若區(qū)間[1,e]上存在x0,使得,求實(shí)數(shù)的取值范圍.(為自然對數(shù)底數(shù))

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】對某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:

    分組

    頻數(shù)

    頻率

    [10,15)

    10

    0.25

    [15,20)

    25

    n

    [20,25)

    m

    p

    [25,30)

    2

    0.05

    合計(jì)

    M

    1

    (1)求出表中M,p及圖中a的值;

    (2)若該校高一學(xué)生有360人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);

    (3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

    查看答案和解析>>

    同步練習(xí)冊答案