【題目】已知函數(shù)(
,
)
(1)若,求函數(shù)
的單調(diào)區(qū)間與極值;
(2)若在區(qū)間上至少存在一點(diǎn)
,使
成立,求實(shí)數(shù)
的取值范圍.
【答案】(1)見(jiàn)解析;(2).
【解析】試題分析:(1)求出的表達(dá)式,定義域以及導(dǎo)數(shù),然后判斷導(dǎo)函數(shù)的符號(hào),求出單調(diào)區(qū)間.
(2)若在區(qū)間上至少存在一點(diǎn)
,使
成立,其充要條件是
在區(qū)間
上的最小值小于0即可.利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)
上的最小值,先求出
導(dǎo)函數(shù)f,然后討論研究函數(shù)在
上的單調(diào)性,將
的各極值與其端點(diǎn)的函數(shù)值比較,其中最小的一個(gè)就是最小值.
試題解析:(1)當(dāng)時(shí),
,令
,解得
,又函數(shù)
的定義域?yàn)?/span>
,由
,得
,由
,得
,
所以的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
,
時(shí),
有極小值
,無(wú)極大值
(2)若在上存在一點(diǎn)
,使得
成立,即
在區(qū)間
上單調(diào)遞減
故在區(qū)間
上的最小值為
,
由,得
,
當(dāng)即
時(shí),
①若,則
對(duì)
成立,所以
在區(qū)間
上單調(diào)遞減
則在區(qū)間
上的最小值為
,
顯然,在區(qū)間
的最小值小于
不成立.
②若,即
時(shí),則有
在
單減,
單增,
所以在區(qū)間
上的最小值為
,由
,
得,解得
,即
,綜上,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,第1個(gè)圖形由正三角形擴(kuò)展而成,共12個(gè)頂點(diǎn).第n個(gè)圖形是由正n+2邊形擴(kuò)展而來(lái) ,則第n+1個(gè)圖形的頂點(diǎn)個(gè)數(shù)是 ( )
(1)
(2)
(3)
(4)
A. (2n+1)(2n+2)B. 3(2n+2)C. (n+2)(n+3)D. (n+3)(n+4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝批發(fā)市場(chǎng)1-5月份的服裝銷售量與利潤(rùn)
的統(tǒng)計(jì)數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷售量 | 3 | 6 | 4 | 7 | 8 |
利潤(rùn) | 19 | 34 | 26 | 41 | 46 |
(1)從這五個(gè)月的利潤(rùn)中任選2個(gè),分別記為,
,求事件“
,
均不小于30”的概率;
(2)已知銷售量與利潤(rùn)
大致滿足線性相關(guān)關(guān)系,請(qǐng)根據(jù)前4個(gè)月的數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(3)若由線性回歸方程得到的利潤(rùn)的估計(jì)數(shù)據(jù)與真實(shí)數(shù)據(jù)的誤差不超過(guò)2萬(wàn)元,則認(rèn)為得到的利潤(rùn)的估計(jì)數(shù)據(jù)是理想的.請(qǐng)用表格中第5個(gè)月的數(shù)據(jù)檢驗(yàn)由(2)中回歸方程所得的第5個(gè)月的利潤(rùn)的估計(jì)數(shù)據(jù)是否理想.參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)若是
的兩個(gè)不同零點(diǎn),是否存在實(shí)數(shù)
,使
成立?若存在,求
的值;若不存在,請(qǐng)說(shuō)明理由.
(2)設(shè),函數(shù)
,存在
個(gè)零點(diǎn).
(i)求的取值范圍;
(ii)設(shè)分別是這
個(gè)零點(diǎn)中的最小值與最大值,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以“你我中國(guó)夢(mèng),全民建小康”為主題“社會(huì)主義核心價(jià)值觀”為主線,為了解、
兩個(gè)地區(qū)的觀眾對(duì)2018年韓國(guó)平昌冬奧會(huì)準(zhǔn)備工作的滿意程度,對(duì)
、
地區(qū)的
名觀眾進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下:
非常滿意 | 滿意 | 合計(jì) | |
合計(jì) |
在被調(diào)查的全體觀眾中隨機(jī)抽取名“非常滿意”的人是
地區(qū)的概率為
,且
.
(1)現(xiàn)從名觀眾中用分層抽樣的方法抽取
名進(jìn)行問(wèn)卷調(diào)查,則應(yīng)抽取“滿意”的
、
地區(qū)的人數(shù)各是多少?
(2)在(1)抽取的“滿意”的觀眾中,隨機(jī)選出人進(jìn)行座談,求至少有兩名是
地區(qū)觀眾的概率?
(3)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系?
附:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
()當(dāng)
時(shí),證明:
為偶函數(shù);
()若
在
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
()若
,求實(shí)數(shù)
的取值范圍,使
在
上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)
在橢圓
:
上.若點(diǎn)
,
,且
.
(1)求橢圓的離心率;
(2)設(shè)橢圓的焦距為4,
,
是橢圓
上不同的兩點(diǎn),線段
的垂直平分線為直線
,且直線
不與
軸重合.
①若點(diǎn),直線
過(guò)點(diǎn)
,求直線
的方程;
② 若直線過(guò)點(diǎn)
,且與
軸的交點(diǎn)為
,求
點(diǎn)橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),
(1)求實(shí)數(shù)的值;
(2)如果對(duì)任意,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校參加夏令營(yíng)的同學(xué)有3名男同學(xué)和3名女同學(xué)
,其所屬年級(jí)情況如下表:
高一年級(jí) | 高二年級(jí) | 高三三年級(jí) | |
男同學(xué) | |||
女同學(xué) |
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽(每人被選到的可能性相同)
(1)用表中字母寫出這個(gè)試驗(yàn)的樣本空間;
(2)設(shè)為事件“選出的2人來(lái)自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,寫出事件
的樣本點(diǎn),并求事件
發(fā)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com