亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    已知函數(shù)f(x)=x3+ax2+bx+5,若x=
    23
    時(shí),y=f(x)
    有極值,且曲線y=f(x)在點(diǎn)f(1)處的切線斜率為3.
    (1)求函數(shù)f(x)的解析式;
    (2)求y=f(x)在[-4,1]上的最大值和最小值.
    分析:(1)先求函數(shù)f(x)=x3+ax2+bx+5的導(dǎo)函數(shù),再由x=
    2
    3
    時(shí),y=f(x)有極值,列一方程,曲線y=f(x)在點(diǎn)f(1)處的切線斜率為3,列一方程,聯(lián)立兩方程即可得a、b值
    (2)先求函數(shù)f(x)=x3+ax2+bx+5的導(dǎo)函數(shù),再解不等式得函數(shù)的單調(diào)區(qū)間,最后列表列出端點(diǎn)值f(-4),f(1)及極值,通過比較求出y=f(x)在[-4,1]上的最大值和最小值
    解答:解:(1)f'(x)=3x2+2ax+b.
    由題意,得
    f′(
    2
    3
    )=3×(
    2
    3
    )2+2a×
    2
    3
    +b=0
    f′(x)=3×12+2a×1+b=3.
    解得
    a=2
    b=-4.

    所以,f(x)=x3+2x2-4x+5.
    (2)由(1)知f'(x)=x3+4x-4=(x+2)(3x-2).
    令f′(x)=0,得x1=-2,x2=
    2
    3

    x -4 (-4,-2) -2 (-2,
    2
    3
    )
    2
    3
    (
    2
    3
    ,1)
    1
    f(x) + 0 - 0 +
    f(x) 極大值 極小值
    函數(shù)值 -11 13
    95
    27
    4
    ∴f(x)在[-4,1]上的最大值為13,最小值為-11.
    點(diǎn)評:本題考查了導(dǎo)數(shù)在函數(shù)極值和函數(shù)最值中的應(yīng)用,解題時(shí)要耐心細(xì)致,規(guī)范解題步驟,避免出錯(cuò).
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
    (1)求m的值,并確定f(x)的解析式;
    (2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2011•上海模擬)已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
    (2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
    (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

    已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

    已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
    (2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
    (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

    已知函數(shù)f(x)、g(x),下列說法正確的是( )
    A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
    B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
    C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
    D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

    查看答案和解析>>

    同步練習(xí)冊答案