亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    α=
    π
    3
    ”是“cosα=
    1
    2
    ”的( 。
    A、必要不充分條件
    B、充分不必要條件
    C、充分必要條件
    D、既不充分也不必要條件
    分析:先判斷p?q與q?p的真假,再根據(jù)充要條件的定義給出結(jié)論;也可判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.
    解答:解:若“α=
    π
    3
    ”則“cosα=
    1
    2
    ”一定成立
    若“cosα=
    1
    2
    ”,則α=2kπ±
    π
    3
    ,k∈Z,即α=
    π
    3
    不一定成立
    故“α=
    π
    3
    ”是“cosα=
    1
    2
    ”的充分不必要條件
    故選B
    點評:判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.
    練習冊系列答案
    相關(guān)習題

    科目:高中數(shù)學 來源: 題型:

    精英家教網(wǎng)如圖,在四邊形ABCD中,AC⊥BD,垂足為O,PO⊥平面ABCD,AO=BO=DO=1,CO=PO=2,E是線段PA上的點,AE:AP=1:3.
    (1)求證:OE∥平面PBC;
    (2)求二面角D-PB-C的大。

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    【選修4-1:幾何證明選講】
    已知,如圖,AB是⊙O的直徑,AC切⊙O于點A,AC=AB,CO交⊙O于點P,CO的延長線交⊙O于點F,BP的延長線交AC于點E.
    (1)求證:FA∥BE;
    (2)求證:
    AP
    PC
    =
    FA
    AB

    (3)若⊙O的直徑AB=2,求tan∠PFA的值.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    (1)已知矩陣A=
    a2
    1b
    有一個屬于特征值1的特征向量
    α
    =
    2
    -1

    ①求矩陣A;
    ②已知矩陣B=
    1-1
    01
    ,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
    (2)已知在直角坐標系xOy中,直線l的參數(shù)方程為
    x=t-3
    y=
    3
     t
    (t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
    ①求直線l普通方程和曲線C的直角坐標方程;
    ②設(shè)點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
    (3)已知函數(shù)f(x)=|x-1|+|x+1|.
    ①求不等式f(x)≥3的解集;
    ②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    精英家教網(wǎng)如圖,一塊礦石晶體的形狀為四棱柱,底面ABCD是正方形,CC1=3,CD=2,且∠C1CB=∠C1CD=60°.
    (1)設(shè)
    CD
    =
    a
    , 
    CB
    =
    b
    , 
    CC1
    =
    c
    ,試用
    a
    ,
    b
    c
    表示
    A1C
    ;
    (2)O為四棱柱的中心,求CO的長;
    (3)求證:A1C⊥BD.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    已知△OAB是邊長為4的正三角形,CO⊥平面OAB,且CO=2,設(shè)D、E分別是OA、AB的中點.
    (1)求證:OB∥平面CDE;
    (2)求點B到平面CDE的距離;
    (3)求二面角O-CD-E的大。

    查看答案和解析>>

    同步練習冊答案