惠州市第一中學(xué)高三年級(jí)數(shù)學(xué)試卷 (2006 8)
考生須知:
1. 本卷滿(mǎn)分150分, 考試時(shí)間120分鐘.
2. 答題前, 在答題卷密封區(qū)內(nèi)填寫(xiě)班級(jí),姓名和學(xué)號(hào).
3. 所有答案必須寫(xiě)在答題卷上, 寫(xiě)在試題卷上無(wú)效.
4. 考試結(jié)束, 只需上交答題卷.
一:選擇題(本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。)
1.函數(shù)的反函數(shù)是( )
A
B
C
D
2 若 f′(x0)=2, 則=( )
A.
-2
B.
3.如圖所示是二次函數(shù)
的圖像,則
等于( )
A. B.
C. D.無(wú)法確定
4.函數(shù)y=1+ax(0<a<1)的反函數(shù)的圖象大致是 ( )
![]() |
(A) (B) (C) (D)
A B C D
5.函數(shù)f(x)=cosx?sinx的圖象相鄰的兩條對(duì)稱(chēng)軸之間的距離是( )
A. B.
C.
D.
6.函數(shù)
的定義域?yàn)殚_(kāi)區(qū)間
,導(dǎo)函
數(shù)
在
內(nèi)的圖象如圖所示,則函數(shù)
在開(kāi)區(qū)間
內(nèi)有極小值點(diǎn)( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
7.如果二次函數(shù)y=-2x2+(a-1)x-3,在區(qū)間(-∞,上是增函數(shù),則(。
A. a=5 B .a=3 C. a≥5 D. a≤-3
8.在等差數(shù)列中,已知
則
等于 ( )
A. 40 B. 42 C. 43 D. 45
9.若曲線(xiàn)的一條切線(xiàn)
與直線(xiàn)
垂直,則
的方程為( )
A. B.
C.
D.
10.定義集合運(yùn)算:A⊙B={z?z= xy(x+y),x∈A,y∈B},設(shè)集合A={0,1},B={2,3},則集合A⊙B的所有元素之和為 ( )
A. 0 B. 6 C.12 D.18
二:填空題(本大題共4小題,每小題5分,共20分。把答案填在題中橫線(xiàn)上。)
11.函數(shù)的定義域是__________.
12.在等比數(shù)列中,如果a6=6,a9=9, 則a3=__________.
13. y=sin2(x)-cos2(
x)+1的周期是_______________.
14.關(guān)于函數(shù)f(x)=lg(x≠0,x∈R)有下列命題:
①函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱(chēng)。
②當(dāng)x>0時(shí),f(x)是增函數(shù);當(dāng)x<0時(shí),f(x)是減函數(shù)。
③函數(shù)f(x)的最小值是lg2。
④當(dāng)-1<x<0或x>1時(shí),f(x)是增函數(shù)。
⑤f(x)無(wú)最大值,也無(wú)最小值。
其中正確的命題的序號(hào)是________。(注:把你認(rèn)為正確的命題的序號(hào)都填上)
三 解答題(本大題共6小題,共80分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.)
15.(本小題滿(mǎn)分12分)
求下列函數(shù)的導(dǎo)數(shù):
y= ex?┮x
16 (本小題滿(mǎn)分12分)
已知函數(shù),且
,
(1) 求a, b的值;
(2)求的最大值與最小值;
(3)若,
,且
,求
和值.
17(本小題滿(mǎn)分14分)
已知曲線(xiàn)和
它們交于點(diǎn)P,過(guò)P點(diǎn)的兩條切線(xiàn)與
軸分別交于A,B兩點(diǎn)。
求△ABP的面積。
18 (本小題滿(mǎn)分14分)
在等差數(shù)列中,首項(xiàng)
,數(shù)列
滿(mǎn)足
(1)求數(shù)列的通項(xiàng)公式;
(2)求
19.(本小題滿(mǎn)分14分)
已知函數(shù)f(x)=x3+ax2+bx+c在x=-與x=1時(shí)都取得極值
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間
(2)若對(duì)xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范圍。
20.(本小題滿(mǎn)分14分)
設(shè)a為實(shí)數(shù),記函數(shù)的最大值為g(a)。
(1)設(shè)t=,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t)
(2)求g(a)
(3)試求滿(mǎn)足的所有實(shí)數(shù)a。
一. 選擇題 :( 本大題共10小題, 每小題5分, 共50分. ) .
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
C
D
B
A
C
A
C
B
A
D
二. 填空題: 本大題有4小題, 每小題5分, 共20分.
11 (-∞,2 〕 12 4
13 1 14 ①③④
三. 解答題
15 (本小題滿(mǎn)分12分) ∞
解: 由 y= ex?┮x
得 y′= (ex)′?┮x+ (ex) ?(┮x)′
= ex ?┮x+ ex
?
= ex(┮x +)
16 (本小題滿(mǎn)分14分)
解:由題意得:
∴
∴
(2)max=1+
min=1-
(3)∵
∴
∴或
∴(舍去)或
(K∈Z)
∴
17(本小題滿(mǎn)分14分)
解 : 由和y=x2得點(diǎn)p的坐標(biāo)為(1,1)
又的導(dǎo)數(shù)為y′=-
,則
在P點(diǎn)的導(dǎo)數(shù)為-1
因此在P點(diǎn)的切線(xiàn)方程為 y-1=-1(x-1)
即y=-x+2 .
那么點(diǎn)B的坐標(biāo)為(2,0), 同理A點(diǎn)的坐標(biāo)為(,0 ).
∴三角形的面積為SABP=ㄏABㄏ?h=
×
×1=
18(本小題滿(mǎn)分14分)
解:(1)設(shè)等差數(shù)列的公差為d,
,
由,解得d=1.
(2)由(1)得
設(shè),
則
兩式相減得
19.(本小題滿(mǎn)分14分)
解:(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b
由f¢()=
,f¢(1)=3+2a+b=0得
a=,b=-2
f¢(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:
x
(-¥,-)
-
(-,1)
1
(1,+¥)
f¢(x)
+
0
-
0
+
f(x)
極大值
¯
極小值
所以函數(shù)f(x)的遞增區(qū)間是(-¥,-)和(1,+¥)
遞減區(qū)間是(-,1)
(2)f(x)=x3-x2-2x+c,xÎ〔-1,2〕,當(dāng)x=-
時(shí),f(x)=
+c
為極大值,而f(2)=2+c,則f(2)=2+c為最大值。
要使f(x)<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2)=2+c
解得c<-1或c>2
20(本小題滿(mǎn)分14分)
解:(I)∵,
∴要使有意義,必須
且
,即
∵,且
……① ∴
的取值范圍是
。
由①得:,∴
,
。
(II)由題意知即為函數(shù)
,
的最大值,
∵直線(xiàn)是拋物線(xiàn)
的對(duì)稱(chēng)軸,∴可分以下幾種情況進(jìn)行討論:
(1)當(dāng)時(shí),函數(shù)
,
的圖象是開(kāi)口向上的拋物線(xiàn)的一段,
由知
在
上單調(diào)遞增,故
;
(2)當(dāng)時(shí),
,
,有
=2;
(3)當(dāng)時(shí),,函數(shù)
,
的圖象是開(kāi)口向下的拋物線(xiàn)的一段,
若即
時(shí),
,
若即
時(shí),
,
若即
時(shí),
。
綜上所述,有=
。
(III)當(dāng)時(shí),
;
當(dāng)時(shí),
,
,∴
,
,故當(dāng)
時(shí),
;
當(dāng)時(shí),
,由
知:
,故
;
當(dāng)時(shí),
,故
或
,從而有
或
,
要使,必須有
,
,即
,
此時(shí),。
綜上所述,滿(mǎn)足的所有實(shí)數(shù)a為:
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com