亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    黑龍江省哈爾濱市第六中學(xué)2009屆高三第一次模擬考試

    數(shù)學(xué)文科試卷

    本試卷分第卷(選擇題)和第 卷(非選擇題)兩部分,滿分150分,考試用時(shí)120分鐘;

    卷(選擇題  滿分60分)

    一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的).

    1.已知集合,則為 (    )

    試題詳情

    A.             B.                C.         D.

    試題詳情

    2.函數(shù)的遞減區(qū)間為                            (    )

    試題詳情

          A.          B.      C.            D.

    試題詳情

    3.函數(shù)的圖象相鄰的兩條對(duì)稱軸之間的距離是    (    )

    試題詳情

      A、       B、         C、        D、 

    試題詳情

    4.已知向量,(1, ),則的最小值是             (    )

    試題詳情

    A.1        B.              C.          D.2

    試題詳情

    5.已知數(shù)列為等差數(shù)列,且,則       (    )

    試題詳情

         A.      B.     C.     D.

    6.下面給出四個(gè)命題:

    試題詳情

    ① 直線與平面內(nèi)兩直線都垂直,則;

    試題詳情

    ② 經(jīng)過(guò)直線有且僅有一個(gè)平面垂直于直線;

    試題詳情

    ③ 過(guò)平面外兩點(diǎn),有且只有一個(gè)平面與垂直;

    試題詳情

    ④ 直線同時(shí)垂直于平面、,則;其中正確的命題個(gè)數(shù)為        (    )

    A、0                         B、1                   C、2                         D、3

    試題詳情

    7.一次文藝演出中,需要給舞臺(tái)上方安裝一排完全相同的彩燈共15只,以不同的點(diǎn)亮方式增加舞臺(tái)

    效果,設(shè)計(jì)者按照每次點(diǎn)亮?xí)r,恰好有6只是關(guān)的,且相鄰的燈不能同時(shí)被關(guān)掉,兩端的燈必須點(diǎn)

    亮的要求進(jìn)行設(shè)計(jì),那么不同點(diǎn)亮方式的種數(shù)是                                                (    )

           A.28                      B.84                       C.180                    D.360

    試題詳情

    8.直線與圓的位置關(guān)系是                 (    )

    試題詳情

        A.相交          B.相離       C.相切     D.與、的取值有關(guān)

    試題詳情

    9.已知x,y滿足的最大值為,最小值為,

    a的范圍為                                                       (    )

    試題詳情

           A         B        C        D 

    試題詳情

    10.函數(shù)是偶函數(shù),則曲線處的切線方程

    是                                                                 (    )

    試題詳情

           A.      B.              C.        D.

    試題詳情

    11.橢圓的中心、右焦點(diǎn)、右頂點(diǎn)、右準(zhǔn)線與軸的交點(diǎn)依次

    試題詳情

    ,則的最大值為                               (    )

    試題詳情

    A.           B.         C.        D.不能確定

    試題詳情

    12.如圖,已知平面平面、是平面與平面的交線上的兩個(gè)定點(diǎn),

    試題詳情

    ,且,,,,在平面內(nèi)有一個(gè)動(dòng)點(diǎn)

    試題詳情

    ,使得,則的面積的最大值是                 (    )

    試題詳情

    文本框:  A.     B.    C.          D.

    (非選擇題 滿分90分)

    把答案填寫在答題紙相應(yīng)位置上

    試題詳情

    二、填空題:本大題共4小題,每小題5分,共20.

    13.二項(xiàng)式的展開式中常數(shù)項(xiàng)為      ;

    試題詳情

    14.在四面體ABCD中,三組對(duì)棱棱長(zhǎng)分別相等且依次為

    試題詳情

    、、5,則此四面體ABCD的外接球的半徑R為      ;

    試題詳情

    15.已知分別為雙曲線的左右焦點(diǎn),為雙曲線左支上的

    試題詳情

    一點(diǎn),若,則雙曲線的離心率的取值范圍是          

    試題詳情

    16.對(duì)于函數(shù), 給出下列命題:

    試題詳情

    ① 存在, 使;

    試題詳情

    ② 存在, 使恒成立;

    試題詳情

    ③ 存在, 使函數(shù)的圖象關(guān)于y軸對(duì)稱;

    試題詳情

    ④ 函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;

    試題詳情

    ⑤ 若, 則

    其中正確命題的序號(hào)是                  ;

    試題詳情

    三、解答題:本大題共6小題,共70分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.

    17.(本題滿分10分)

    試題詳情

    中,角的對(duì)邊分別為,

    試題詳情

    ,且;

    試題詳情

    (1)求角的大;

    試題詳情

    (2)當(dāng)取最大值時(shí),求角的大。

     

     

     

    試題詳情

    18. (本題滿分12分)

    在教室內(nèi)有10名學(xué)生,分別佩帶著從1號(hào)到10號(hào)的;,任意選3人記錄其;盏奶(hào)碼;

    (1)求最小號(hào)碼為5的概率;

    (2)求3個(gè)號(hào)碼中至多有一個(gè)偶數(shù)的概率;

    (3)求3個(gè)號(hào)碼之和不超過(guò)9的概率;

     

     

     

    試題詳情

    19. (本小題滿分12分)

        如圖:直平行六面體,底面ABCD是邊長(zhǎng)為2a的菱形,∠BAD=60°,E為AB中點(diǎn),二面角為60°;

        (1)求證:平面⊥平面;

        (2)求二面角的余弦值;

        (3)求點(diǎn)到平面的距離;

     

     

     

     

    試題詳情

    20. (本題滿分12分)

    試題詳情

    設(shè)函數(shù),,當(dāng)時(shí),取得極值;

    試題詳情

    (1) 求的值,并判斷是函數(shù)的極大值還是極小值;

    試題詳情

    (2) 當(dāng)時(shí),函數(shù)的圖象有兩個(gè)公共點(diǎn),求的取值范圍;

     

     

     

     

     

     

    試題詳情

    21. (本題滿分12分)

    試題詳情

    已知數(shù)列中,,且;

    試題詳情

    (1)求證:

    試題詳情

    (2)設(shè),是數(shù)列的前項(xiàng)和,求的解析式;

    試題詳情

    (3)求證:不等式對(duì)于恒成立;((3問只理科生做,文科生不做

     

     

     

     

    試題詳情

    22.(本題滿分12分)

    試題詳情

    在△ABC中,,B是橢圓的上頂點(diǎn),l是雙曲線位于x軸下方的準(zhǔn)線,當(dāng)AC在直線l上運(yùn)動(dòng)時(shí).

    (1)求△ABC外接圓的圓心P的軌跡E的方程;

    試題詳情

    (2)過(guò)定點(diǎn)F(0,)作互相垂直的直線l1、l2,分別交軌跡E于M、N和R、Q;

    求四邊形MRNQ的面積的最小值;

     

    哈爾濱市第六中學(xué)2009屆高三第一次模擬考試

    文科數(shù)學(xué)試卷答案

    試題詳情

    三、解答題:

    17.(本題滿分10分)

    試題詳情

    中,角的對(duì)邊分別為,,

    試題詳情

    ,且;

    試題詳情

    ⑴求角的大。

    試題詳情

    ⑵當(dāng)取最大值時(shí),求角的大小;

    試題詳情

    解:⑴由,得,從而

    試題詳情

    由正弦定理得

    試題詳情

    試題詳情

    ,            (4分)

    試題詳情

    試題詳情

    試題詳情

    得,時(shí),

    試題詳情

    時(shí),取最大值                                    (10分)

    試題詳情

    18. (本題滿分12分)

    在教室內(nèi)有10名學(xué)生,分別佩帶著從1號(hào)到10號(hào)的;,任意選3人記錄其校徽的號(hào)碼;

    (1)求最小號(hào)碼為5的概率;

    (2)求3個(gè)號(hào)碼中至多有一個(gè)偶數(shù)的概率;

    (3)求3個(gè)號(hào)碼之和不超過(guò)9的概率.

    試題詳情

    (1) 解:從10人中任取3人,共有等可能結(jié)果種,最小號(hào)碼為5,相當(dāng)于從6,7,8,9,10共5個(gè)中任取2個(gè),則共有種結(jié)果,則最小號(hào)碼為5的概率為:        4分

    (2) 解:選出3個(gè)號(hào)碼中至多有1個(gè)偶數(shù)包括沒有偶數(shù)和1個(gè)偶數(shù)兩種情況,

    試題詳情

    取法共有種,所以滿足條件的概率為:.            8分

    (3) 解:三個(gè)號(hào)碼之和不超過(guò)9的可能結(jié)果為(1,2,3),(1,2,4),(1,2,5),(1,2,6),

    試題詳情

    (2,3,4),(1,3,4),(1,3,5),則所求概率為:.           12分

    試題詳情

    19.(本大題滿分12分)

    如圖:直平行六面體,底面ABCD是邊長(zhǎng)為2a的菱形,∠BAD=60°,E為AB中點(diǎn),二面角為60°;

        (1)求證:平面⊥平面;

        (2)求二面角的余弦值;

        (3)求點(diǎn)到平面的距離;

    (I)證明:連結(jié)BD,在菱形ABCD中:∠BAD=60°

        ∴△ABD為正三角形  ∵E為AB中點(diǎn),∴ED⊥AB

        在直六面體中:平面⊥平面ABCD且交于AB

        ∵面ABCD    ∴ED⊥面    ∴平面⊥平面………3分

        (II)解:(解法一)由(I)知:ED⊥面  ∵面,∴

      直平行六面體中:⊥面ABCD 由三垂線定理的逆定理知:AE⊥ED

        ∴∠A1EA為二面角的平面角    ∴

        取中點(diǎn)F,連EF、,則:

        在直平行六面體中:   

        ∴E、F、C1、D四點(diǎn)共面    ∵ED⊥面ABB1A1且EF面

        ∴∠A1EF為二面角的平面角………………5分

        在中:

        在中:

        在中:………………7分

        ∴在中,

        ∴二面角的余弦值為………………8分

        (解法二)由已知得:二面角為

        可證得:∠C1DC為二面角的平面角    求得:

        故二面角的大小為

        所以,二面角的余弦值為          ………………8分

        (III)過(guò)F作FG⊥A1E交于G點(diǎn)

        ∵平面A1ED⊥平面ABB1A1且平面A1ED平面

        ∴FG⊥面,即:FG是點(diǎn)F到平面A1ED的距離;

        在中:

        ;

    且E、D面   ∴C1到平面的距離為:……12分

    試題詳情

    20 (本大題滿分12)
       設(shè)函數(shù),當(dāng)時(shí),取得極值。

    試題詳情

    (1)求的值,并判斷是函數(shù)的極大值還是極小值;

    試題詳情

    (2)當(dāng)時(shí),函數(shù)的圖象有兩個(gè)公共點(diǎn),求的取值范圍;

    試題詳情

    解:(1)由題意    當(dāng)時(shí),取得極值,

    試題詳情

           即 

    試題詳情

       此時(shí)當(dāng)時(shí),,當(dāng)時(shí),

    試題詳情

      是函數(shù)的極小值;                                    4分

    試題詳情

      (2)設(shè),則  ,

    試題詳情

       設(shè),

    試題詳情

      ,令解得,    列表如下:

    試題詳情

       

    試題詳情

    試題詳情

    試題詳情

    試題詳情

    試題詳情

    試題詳情

    4

    試題詳情

     

    試題詳情

    試題詳情

    __

    0

    +

     

    試題詳情

    試題詳情

    試題詳情

    試題詳情

    試題詳情

    試題詳情

    試題詳情

    試題詳情

    試題詳情

    函數(shù)上是增函數(shù),在上是減函數(shù);

    試題詳情

    當(dāng)時(shí),有極大值;當(dāng)時(shí),有極小值;

    試題詳情

    函數(shù)的圖象有兩個(gè)公共點(diǎn),函數(shù)的圖象有兩個(gè)公共點(diǎn)

    試題詳情

         或                          12分

    試題詳情

    21. (本題滿分12分)

    試題詳情

    已知數(shù)列中,,且

    試題詳情

    (1)求證:
    (2)設(shè),是數(shù)列的前項(xiàng)和,求的解析式;

    試題詳情

    (3)求證:不等式對(duì)于恒成立。

    試題詳情

    (1),

    試題詳情

    又因?yàn)?sub>,則,即,又,…………………………………….4分

    試題詳情

    (2),      …….6分

    試題詳情

    因?yàn)?sub>,所以當(dāng)時(shí),….8分

    試題詳情

    當(dāng)時(shí),,①

    試題詳情

    ,②

    試題詳情

    ①-②:,

    試題詳情

    .綜上所述,    ……………12分

    22.(本題滿分12分)

    試題詳情

    在△ABC中,,B是橢圓的上頂點(diǎn),l是雙曲線位于x軸下方的準(zhǔn)線,當(dāng)AC在直線l上運(yùn)動(dòng)時(shí).

      (1) 求△ABC外接圓的圓心P的軌跡E的方程;

    試題詳情

      (2) 過(guò)定點(diǎn)F(0,)作互相垂直的直線l1、l2,分別交軌跡E于M、N和R、Q.

    求四邊形MRNQ的面積的最小值.

    試題詳情

     (1)解:(解法一)由橢圓方程及雙曲線方程可得點(diǎn)B(0,2),

    試題詳情

    直線l的方程是,且AC在直線l上運(yùn)動(dòng).

    試題詳情

    可設(shè),

    試題詳情

    則AC的垂直平分線方程為

    試題詳情

    AB的垂直平分線方程為 ②    

    試題詳情

    ∵P是△ABC的外接圓圓心,點(diǎn)P的坐標(biāo)(x,y)滿足方程①和②.

    試題詳情

    由①和②聯(lián)立消去m得:,即.

    試題詳情

    故圓心P的軌跡E的方程為            6分

    (解法二)利用直線被圓截得的弦長(zhǎng)公式(勾股定理)求軌跡方程也可;

    試題詳情

    (2)解:如圖,直線l1和l2的斜率存在且不為零,設(shè)l1的方程為

    試題詳情

    ∵l1⊥l2,∴l(xiāng)2的方程為

    試題詳情

    ,∴直線l1與軌跡E交于兩點(diǎn).

    試題詳情

    設(shè)M(x1,y1), N(x2,y2),則

    試題詳情


    同理可得:                  9分

    試題詳情

    ∴四邊形MRNQ的面積

    試題詳情

    試題詳情

    試題詳情

    當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.故四邊形MRNQ的面積的最小值為72.12分

     

     

     

     

    試題詳情


    同步練習(xí)冊(cè)答案