題目列表(包括答案和解析)
(本小題滿分12分) 已知橢圓的離心率
,A,B
分別為橢圓的長軸和短軸的端點,為AB的中點,O為坐標原點,且
.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點,求△POQ面積最大時直線
的方程.
(本小題滿分12分) 已知橢圓E:=1(a>b>o)的離心率e=
,且經(jīng)過點(
,1),O為坐標原點。
(Ⅰ)求橢圓E的標準方程;
。á颍﹫AO是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點,過M作圓O的兩條切線,切點分別為P、Q,當∠PMQ=60°時,求直線PQ的方程.
.(本小題滿分12分)已知橢圓的中心在原點,焦點在軸上,一個頂點為
,且其右焦點到直線
的距離為3.
(1)求橢圓的方程;
(2)是否存在斜率為 ,且過定點
的直線
,使
與橢圓交于兩個不同的點
、
,且
?若存在,求出直線
的方程;若不存在,請說明理由.
(本小題滿分12分)
已知橢圓:
的離心率為
,且過點
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)垂直于坐標軸的直線與橢圓
相交于
、
兩點,若以
為直徑的圓
經(jīng)過坐標原點.證明:圓
的半徑為定值.
.(本小題滿分12分)
已知橢圓的中心在坐標原點,焦點在
軸上,該橢圓經(jīng)過點
,且離心率為
.
(1)求橢圓的標準方程;
(2)若直線與橢圓
相交
兩點(
不是左右頂點),且以
為直徑的圓過橢圓
的右頂點,求證:直線
過定點,并求出該定點的坐標.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com