亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    21.[解](1)由題意.. - [解](2)∵函數遞減. ∴對每個自然數.有>>. 則以..為邊長能構成一個三角形的充要條件是+>. 即. - 解得. ∴ - [解](3)∵. ∴. . - 于是, 數列是一個遞減的等差數列. 因此.當且僅當.且時.數列的前項的和最大. 由. 得. ∴ - 查看更多

     

    題目列表(包括答案和解析)

     [番茄花園1] (本題滿分)在△ABC中,角A,B,C所對的邊分別為a,b,c,設S為△ABC的面積,滿足。

    (Ⅰ)求角C的大;

    (Ⅱ)求的最大值。

     (Ⅰ)解:由題意可知

    absinC=,2abcosC.

    所以tanC=.

    因為0<C<

    所以C=.

    (Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                            =sinA+cosA+sinA=sin(A+)≤.

    當△ABC為正三角形時取等號,

    所以sinA+sinB的最大值是.

     

     


     [番茄花園1]1.

    查看答案和解析>>

    已知函數f(x)=ex-ax,其中a>0.

    (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

    (2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

    【解析】解:.

    單調遞減;當單調遞增,故當時,取最小值

    于是對一切恒成立,當且僅當.       、

    時,單調遞增;當時,單調遞減.

    故當時,取最大值.因此,當且僅當時,①式成立.

    綜上所述,的取值集合為.

    (Ⅱ)由題意知,

    ,則.當時,單調遞減;當時,單調遞增.故當,

    從而

    所以因為函數在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

    【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.

     

    查看答案和解析>>

    已知函數的最小值為0,其中

    (Ⅰ)求的值;

    (Ⅱ)若對任意的成立,求實數的最小值;

    (Ⅲ)證明).

    【解析】(1)解: 的定義域為

    ,得

    當x變化時,,的變化情況如下表:

    x

    -

    0

    +

    極小值

    因此,處取得最小值,故由題意,所以

    (2)解:當時,取,有,故時不合題意.當時,令,即

    ,得

    ①當時,,上恒成立。因此上單調遞減.從而對于任意的,總有,即上恒成立,故符合題意.

    ②當時,,對于,,故上單調遞增.因此當取時,,即不成立.

    不合題意.

    綜上,k的最小值為.

    (3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.

    時,

                          

                          

    在(2)中取,得 ,

    從而

    所以有

         

         

         

         

          

    綜上,,

     

    查看答案和解析>>

    設函數f(x)=在[1,+∞上為增函數.  

    (1)求正實數a的取值范圍;

    (2)比較的大小,說明理由;

    (3)求證:(n∈N*, n≥2)

    【解析】第一問中,利用

    解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

    ∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

    (2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數,

    ∴n≥2時:f()=

      

     (3)  ∵   ∴

     

    查看答案和解析>>

    已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

    (I)求橢圓的方程;

    (II)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足O為坐標原點),當 時,求實數的取值范圍.

    【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關系的運用。

    第一問中,利用

    第二問中,利用直線與橢圓聯系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

    解:(1)由題意知

     

    查看答案和解析>>


    同步練習冊答案