題目列表(包括答案和解析)
(本題滿分12分)已知函數(shù),g (x) =-6x + ln x3(a≠0).
(Ⅰ)若函數(shù)h (x) = f (x)-g (x) 有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)a>0,使得方程g (x) = x f ′(x)-3(2a + 1)x 無實(shí)數(shù)解?若存在,求出a的取值范圍?若不存在,請(qǐng)說明理由.
(本題滿分12分)已知函數(shù),g (x) =-6x + ln x3(a≠0).
(Ⅰ)若函數(shù)h (x) = f (x)-g (x) 有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)a>0,使得方程g (x) = x f ′(x)-3(2a + 1)x 無實(shí)數(shù)解?若存在,求出a的取值范圍?若不存在,請(qǐng)說明理由.
已知直三棱柱中,
,
,
是
和
的交點(diǎn), 若
.
(1)求的長(zhǎng); (2)求點(diǎn)
到平面
的距離;
(3)求二面角的平面角的正弦值的大小.
【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問中,利用ACCA
為正方形,
AC=3
第二問中,利用面BBC
C內(nèi)作CD
BC
,
則CD就是點(diǎn)C平面A
BC
的距離CD=
,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為
解法一: (1)連AC交A
C于E, 易證ACC
A
為正方形,
AC=3
…………… 5分
(2)在面BBC
C內(nèi)作CD
BC
,
則CD就是點(diǎn)C平面A
BC
的距離CD=
… 8分
(3) 易得AC面A
CB,
過E作EH
A
B于H, 連HC
,
則HC
A
B
C
HE為二面角C
-A
B-C的平面角. ……… 9分
sin
C
HE=
二面角C
-A
B-C的平面角的正弦大小為
……… 12分
解法二: (1)分別以直線CB、CC
、C
A為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C
(0,
0, 0), B
(4,
0, 0), B(4, -3, 0), C(0, -3,
0), A
(0,
0, h), A(0, -3, h), G(2, -
, -
) ……………………… 3分
=(2, -
, -
),
=(0,
-3, -h(huán)) ……… 4分
·
=0,
h=3
(2)設(shè)平面ABC
得法向量
=(a, b, c),則可求得
=(3, 4, 0) (令a=3)
點(diǎn)A到平面A
BC
的距離為H=|
|=
……… 8分
(3) 設(shè)平面ABC的法向量為
=(x, y, z),則可求得
=(0, 1, 1) (令z=1)
二面角C
-A
B-C的大小
滿足cos
=
=
………
11分
二面角C
-A
B-C的平面角的正弦大小為
(本題12分)如圖所示,已知圓定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足
,點(diǎn)N的軌跡為曲線E。
(1)求曲線E的方程;
(2)若過定點(diǎn)F(0,2)的直線交曲線E于G、H不同的兩點(diǎn),求此直線斜率的取值范圍;
(3)若點(diǎn)G在點(diǎn)F、H之間,且滿足的取值范圍。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com