亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    在雙曲線上有一個(gè)點(diǎn)P.F1.F2為該雙曲線的兩個(gè)焦點(diǎn).∠F1PF2=90°. 且△F1PF2的三條邊長(zhǎng)成等差數(shù)列.則此雙曲線的離心率是 ( ) A.2 B.3 C.4 D.5 查看更多

     

    題目列表(包括答案和解析)

    設(shè)F1、F2分別為橢圓C:
    x2
    a2
    +
    y2
    b2
    =1(a>b>0)的左、右兩個(gè)焦點(diǎn).
    (1)若橢圓C上的點(diǎn)A(1,
    3
    2
    )到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
    (2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;
    (3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線
    x2
    a2
    -
    y2
    b2
    =1
    寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明.

    查看答案和解析>>

    16.已知F1、F2為雙曲線=1(a>0,b>0且a≠b)的兩個(gè)焦點(diǎn),P為雙曲線右支上異于頂點(diǎn)的任意一點(diǎn),O為坐標(biāo)原點(diǎn).下面四個(gè)命題

    (A)△PF1F2的內(nèi)切圓的圓心必在直線x=a上;

    (B)△PF1F2的內(nèi)切圓的圓心必在直線x=b上;

    (C)△PF1F2的內(nèi)切圓的圓心必在直線OP上;

    (D)△PF1F2的內(nèi)切圓必通過(guò)點(diǎn)(a,0).

        其中真命題的代號(hào)是__________(寫(xiě)出所有真命題的代號(hào)).

    查看答案和解析>>

    (14分)設(shè)F1、F2分別為橢圓C: =1(a>b>0)的左、右兩個(gè)焦點(diǎn).

    (1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);

    (2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;

    (3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明.

     

    查看答案和解析>>

    (14分)設(shè)F1F2分別為橢圓C =1(ab>0)的左、右兩個(gè)焦點(diǎn).

    (1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);

    (2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;

    (3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PMPN的斜率都存在,并記為kPMkPN時(shí),那么kPMkPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明.

     

    查看答案和解析>>

    設(shè)F1、F2分別為橢圓C:數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
    (Ⅰ)若橢圓C上的點(diǎn)A(1,數(shù)學(xué)公式)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
    (Ⅱ)設(shè)點(diǎn)P是(Ⅰ)中所得橢圓上的動(dòng)點(diǎn),Q(0,數(shù)學(xué)公式),求|PQ|的最大值;
    (Ⅲ)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P在橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為KPM、KPN時(shí),那么KPM與KPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.設(shè)對(duì)雙曲線數(shù)學(xué)公式-數(shù)學(xué)公式=1寫(xiě)出具有類(lèi)似特性的性質(zhì)(不必給出證明).

    查看答案和解析>>


    同步練習(xí)冊(cè)答案