題目列表(包括答案和解析)
FA |
FB |
5 |
5 |
PF1 |
PF2 |
OQ |
OR |
AP |
PB |
1 |
2 |
AP |
PB |
1 |
2 |
5 |
5 |
PF1 |
PF2 |
OQ |
OR |
AP |
PB |
1 |
2 |
AP |
PB |
1 |
2 |
(2012年高考江西卷理科20) (本題滿分13分)
已知三點O(0,0),A(-2,1),B(2,1),曲線C上任意一點M(x,y)滿足.
(1) 求曲線C的方程;
(2)動點Q(x0,y0)(-2<x0<2)在曲線C上,曲線C在點Q處的切線為l向:是否存在定點P(0,t)(t<0),使得l與PA,PB都不相交,交點分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值。若不存在,說明理由。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com