亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    18.解:(1)由題意可得:PA.PB==y-8, 化簡得x=2y--4分 (2)將y=x+b 代入x=2y中.得x=2(x+b)整理得x-2x-2b=0 可知.Δ=4+8b>0,x+x=2, x x=-2b. ∵y= x+b,y= x+b. ∴y y=(x+b)(x+b)= x x+b(x+x)+b--8分 ∵OC⊥OD. ∴x x+ y y=0.即b-2b=0, b=2或b=0.即b=2-12分 查看更多

     

    題目列表(包括答案和解析)

    如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

    (Ⅰ)證明PC⊥AD;

    (Ⅱ)求二面角A-PC-D的正弦值;

    (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

     

    【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

    (1)證明:易得,于是,所以

    (2) ,設(shè)平面PCD的法向量,

    ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

    所以二面角A-PC-D的正弦值為.

    (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

    ,故 

    所以,,解得,即.

    解法二:(1)證明:由,可得,又由,,故.又,所以.

    (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

    因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

    因此所以二面角的正弦值為.

    (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

    中,由,,

    可得.由余弦定理,,

    所以.

     

    查看答案和解析>>

    設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

    (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

    (Ⅱ)若,證明直線的斜率 滿足

    【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

    ,得

    ,可得,代入①并整理得

    由于,故.于是,所以橢圓的離心率

    (2)證明:(方法一)

    依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

    由條件得消去并整理得  ②

    ,,

    .

    整理得.而,于是,代入②,

    整理得

    ,故,因此.

    所以.

    (方法二)

    依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

    由P在橢圓上,有

    因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

    ,,得整理得.

    于是,代入③,

    整理得

    解得,

    所以.

     

    查看答案和解析>>

    已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.

    (I)求橢圓的方程;

    (II)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng) 時(shí),求實(shí)數(shù)的取值范圍.

    【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。

    第一問中,利用

    第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

    解:(1)由題意知

     

    查看答案和解析>>

    已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

    (Ⅰ)若 ,是否存在,有?請說明理由;

    (Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;

    (Ⅲ)若試確定所有的p,使數(shù)列中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中的一項(xiàng),請證明.

    【解析】第一問中,由,整理后,可得、為整數(shù)不存在、,使等式成立。

    (2)中當(dāng)時(shí),則

    ,其中是大于等于的整數(shù)

    反之當(dāng)時(shí),其中是大于等于的整數(shù),則

    顯然,其中

    滿足的充要條件是,其中是大于等于的整數(shù)

    (3)中設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

    當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

    當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),

    結(jié)合二項(xiàng)式定理得到結(jié)論。

    解(1)由,整理后,可得,為整數(shù)不存在、,使等式成立。

    (2)當(dāng)時(shí),則,其中是大于等于的整數(shù)反之當(dāng)時(shí),其中是大于等于的整數(shù),則,

    顯然,其中

    滿足的充要條件是,其中是大于等于的整數(shù)

    (3)設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

    當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

    當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),

       由,得

    當(dāng)為奇數(shù)時(shí),此時(shí),一定有使上式一定成立。當(dāng)為奇數(shù)時(shí),命題都成立

     

    查看答案和解析>>

    已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

    (1)求f(x)的解析式;

    (2)若過點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

    【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

    (2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

    然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

    解:(1)f′(x)=3ax2+2bx+c

    依題意

    又f′(0)=-3

    ∴c=-3 ∴a=1 ∴f(x)=x3-3x

    (2)設(shè)切點(diǎn)為(x0,x03-3x0),

    ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

    ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

    又切線過點(diǎn)A(2,m)

    ∴m-(x03-3x0)=(3x02-3)(2-x0)

    ∴m=-2x03+6x02-6

    令g(x)=-2x3+6x2-6

    則g′(x)=-6x2+12x=-6x(x-2)

    由g′(x)=0得x=0或x=2

    ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

    ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

    畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

    所以m的取值范圍是(-6,2).

     

    查看答案和解析>>


    同步練習(xí)冊答案