亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    同理可得: .這就證明了=. 查看更多

     

    題目列表(包括答案和解析)

     [番茄花園1] 本題共有2個(gè)小題,第一個(gè)小題滿分5分,第2個(gè)小題滿分8分。

    已知數(shù)列的前項(xiàng)和為,且,

    (1)證明:是等比數(shù)列;

    (2)求數(shù)列的通項(xiàng)公式,并求出n為何值時(shí),取得最小值,并說(shuō)明理由。

    同理可得,當(dāng)n≤15時(shí),數(shù)列{Sn}單調(diào)遞減;故當(dāng)n=15時(shí),Sn取得最小值.

     


     [番茄花園1]20.

    查看答案和解析>>

    已知點(diǎn)),過(guò)點(diǎn)作拋物線的切線,切點(diǎn)分別為(其中).

    (Ⅰ)若,求的值;

    (Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;

    (Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,

    求圓面積的最小值.

    【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。

    中∵直線與曲線相切,且過(guò)點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。

    (3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

    (Ⅰ)由可得,.  ------1分

    ∵直線與曲線相切,且過(guò)點(diǎn),∴,即

    ,或, --------------------3分

    同理可得:,或----------------4分

    ,∴,. -----------------5分

    (Ⅱ)由(Ⅰ)知,,,則的斜率,

    ∴直線的方程為:,又,

    ,即. -----------------7分

    ∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分

    故圓的面積為. --------------------9分

    (Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,    ………10分

    ,

    當(dāng)且僅當(dāng),即,時(shí)取等號(hào).

    故圓面積的最小值

     

    查看答案和解析>>

    ,,為常數(shù),離心率為的雙曲線上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線的焦點(diǎn)與雙曲線的一頂點(diǎn)重合。(Ⅰ)求拋物線的方程;(Ⅱ)過(guò)直線為負(fù)常數(shù))上任意一點(diǎn)向拋物線引兩條切線,切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。

    【解析】第一問(wèn)中利用由已知易得雙曲線焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

    第二問(wèn)中,,,,

    故直線的方程為,即,

    所以,同理可得:

    借助于根與系數(shù)的關(guān)系得到即,是方程的兩個(gè)不同的根,所以

    由已知易得,即

    解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

    (Ⅱ)設(shè),,

    故直線的方程為,即,

    所以,同理可得:,

    ,是方程的兩個(gè)不同的根,所以

    由已知易得,即

     

    查看答案和解析>>

    某市將建一個(gè)制藥廠,但該廠投產(chǎn)后預(yù)計(jì)每天要排放大約80噸工業(yè)廢氣,這將造成極大的環(huán)境污染.為了保護(hù)環(huán)境,市政府決定支持該廠貸款引進(jìn)廢氣處理設(shè)備來(lái)減少?gòu)U氣的排放:該設(shè)備可以將廢氣轉(zhuǎn)化為某種化工產(chǎn)品和符合排放要求的氣體.
    經(jīng)測(cè)算,制藥廠每天利用設(shè)備處理廢氣的綜合成本y(元)與廢氣處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:y=
    40x+1200,    0<x<40
    2x2-100x+5000,40≤x≤80
    ,且每處理1噸工業(yè)廢氣可得價(jià)值為80元的某種化工產(chǎn)品并將之利潤(rùn)全部用來(lái)補(bǔ)貼廢氣處理.
    (1)若該制藥廠每天廢氣處理量計(jì)劃定為20噸時(shí),那么工廠需要每天投入的廢氣處理資金為多少元?
    (2)若該制藥廠每天廢氣處理量計(jì)劃定為x噸,且工廠不用投入廢氣處理資金就能完成計(jì)劃的處理量,求x的取值范圍;
    (3)若該制藥廠每天廢氣處理量計(jì)劃定為x(40≤x≤80)噸,且市政府決定為處理每噸廢氣至少補(bǔ)貼制藥廠a元以確保該廠完成計(jì)劃的處理量總是不用投入廢氣處理資金,求a的值.

    查看答案和解析>>

    精英家教網(wǎng)已知圓O:x2+y2=1,圓C:(x-4)2+(y-4)2=1,由兩圓外一點(diǎn)P(a,b)引兩圓切線PA、PB,切點(diǎn)分別為A、B,如圖,滿足|PA|=|PB|;
    (Ⅰ)將兩圓方程相減可得一直線方程l:x+y-4=0,該直線叫做這兩圓的“根軸”,試證點(diǎn)P落在根軸上;
    (Ⅱ)求切線長(zhǎng)|PA|的最小值;
    (Ⅲ)給出定點(diǎn)M(0,2),設(shè)P、Q分別為直線l和圓O上動(dòng)點(diǎn),求|MP|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

    查看答案和解析>>


    同步練習(xí)冊(cè)答案