題目列表(包括答案和解析)
設函數,
,則
的值域是( )
A. B.
C.
D.
第II卷(非選擇題,共90分)
已知均為正數,
,則
的最小值是 ( )
A. B.
C.
D.
第Ⅱ卷 (非選擇題 共90分)
二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上。
正項數列的前n項的乘積
,則數列
的前n項和
中的最大值是 ( )
A. B.
C.
D.
第Ⅱ卷(非選擇題,共90分)
是定義在R上的偶函數,且在
上為增函數,
、
是銳角三角形的兩個內角,則( 。
A. B.
C. D.
第Ⅱ卷(非選擇題,共90分)
若函數在區(qū)間[a,b]上的圖象為連續(xù)不斷的一條曲線,則下列說法正確的是( )
A.若,不存在實數
使得
;
B.若,存在且只存在一個實數
使得
;
C.若,有可能存在實數
使得
;
D.若,有可能不存在實數
使得
第Ⅱ卷(非選擇題 共90分)
一、選擇題: CCBCD DCDBB C A
二、填空題: 13.
45 14. 30 15. 16.
三、解答題:17.解: (1) ………1分
,化簡得
…3分
(2))
令Z),函數f(α)的對稱軸方程為
Z).……12分
18.解:(1)油罐沒被引爆分兩種情形:
①5發(fā)子彈只有1發(fā)擊中,其概率為:
②5發(fā)子彈全沒有擊中,其概率為
(2)的可能取值為2,3,4,5.
∴的分布列為:
2
3
4
5
P
的數學期望為:E
=2×
+3×
+4×
+5×
=
.……………………12分
19. (1)證明:∵PA⊥底面ABCD,∴PA⊥AD.又AB⊥BC,PA∩AB=A,∴BC⊥平面PAB.……(3分) 又BC平面PCB,∴平面PAB⊥平面PCB.……5分
(2)解:過A作AF∥BC,交CD于F,以A為原點,AF,AB,AP所在直線分別為x軸,y軸,z軸,建立如圖所示的空間直角坐標系Axyz.
設PA=AB=BC=a,則A(0,0,0), B(0,a,0),C(a,a,0), P(0,0,a), E(0,
.……………………………………8分
設n1=(x,y,1)為平面AEC的一個法向量, 則n1⊥,n1⊥
,
∴解得x=
, y=-
,∴n1=(
,-
,1).
設n2=(x′,y′,1)為平面PBC的一個法向量,同理可得n2=(0,1,1).…………11分
cos<n1,n2>==
∴平面AEC和平面PBC所成銳二面角的余弦值為
.…12分
20. 解:(1)由an+1=2an+n+1可得an+1+(n+1)+2=2(an+n+2),
所以數列{an+n+2}是一個公比為2的等比數列,其首項為a1+1+2=-1+1+2=2,
于是an+n+2=2?2n-1=2n.…………(10分) 故an=2n-n-2.
{an}的前n項和Sn=……6分
(2)證明:假設{an}是等比數列,設其首項為a1,
則a2=2a1+2,
a3=2a2+3=4a1+7,………(8分)于是有(2a1+2)2=a1(4a1+7),解得:a1=-4,于是公比,這時a4=a1q3=(-4)×(
)3=-
.…………………10分
但是由題中所給遞推公式,a4=2a3+4=8a1+18=-14,二者矛盾,所以{an}不可能是等比數列.……………………12分
21.解:(1)設橢圓C的方程為半焦距為c,依題意有
|PF|=|F1F2|=2c
∴ 解得
,∴b=1. ∴所求橢圓方程為
…4分
(2)由得
.
設點A、B的坐標分別為A(x1, y1)、B(x2,y2),……………………6分
.
①當m=0時,點A、B關于原點對稱,則λ=0.②當m≠0時,點A、B不關于原點對稱,則λ≠0.
∵點Q在橢圓上,∴有……………8分
化簡得4m2(1+2k2)=
∵
∵直線與橢圓交于不同的兩點,△=16k2m2-4(1+2k2)(2m2-2)=8(2k2+1-m2) ∴ (1+2k2-m2)>0,
1+2k2>m2.(**)…(10分)由(*)(**)可得4m2>.∵m≠0, ∴
綜上,實數的取值范圍是(-2,2).………………………………………12分
22.解:(1)函數f(x)的定義域為:(-∞, -1)∪(-1, +∞),……………………1分
∵…………………………………2分
令令
得x<-2或-1<x<0.
則函數f(x)的遞增區(qū)間是(-2,-1), (0, +∞),遞減區(qū)間是(-∞, -2), (-1, 0).………4分
(2)由(1)知,f(x)在[上遞減,在[0,e-1]上遞增,又
,故m> e2-2時,不等式恒成立.……8分
(3)依題意,原命題等價于方程x-a+1-ln(1+x)2=0在x∈[0, 2]上有兩個相異的實根,……9分
記h(x)=x-a+1-ln(1+x)2, 則h′(x)=1-令h′(x)>0,得x<-1或x>1,令h′(x)<0,得-1<x<1.
∴h(x)在[0, 1)上遞減,在(1,2]上遞增.………………10分
為使h(x)在[0,2]上恰好有兩個相異的實根,只須h(x)=0在[0,1)和(1,2]上各有一個實根,于是有即a的取值范圍是(2-ln2, 3-ln3].…………14分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com