亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    由上表知當(dāng).說明在上午11:00與下午14:00.該物體溫度最高.最高溫度是62℃ 查看更多

     

    題目列表(包括答案和解析)

    《中華人民共和國個人所得稅》第十四條中有下表:

    目前,上表中“全月應(yīng)納稅所得額”是從總收入中減除2000元后的余額,例如:某人月總收入2520元,減除2000元,應(yīng)納稅所得額就是520元,由稅率表知其中500元稅率為5%,另20元的稅率為10%,所以此人應(yīng)納個人所得稅500×5%+20×10%=27元;
    (1)請寫出月個人所得稅y關(guān)于月總收入x(0<x≤7000)的函數(shù)關(guān)系;
    (2)某人在某月交納的個人所得稅為190元,那么他這個月的總收入是多少元?

    查看答案和解析>>

    已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.

    (Ⅰ)求實數(shù)的值; 

    (Ⅱ)求在區(qū)間上的最大值;

    (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

    【解析】第一問當(dāng)時,,則。

    依題意得:,即    解得

    第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

    第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

    不妨設(shè),則,顯然

    是以O(shè)為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

    (Ⅰ)當(dāng)時,,則

    依題意得:,即    解得

    (Ⅱ)由(Ⅰ)知,

    ①當(dāng)時,,令

    當(dāng)變化時,的變化情況如下表:

    0

    0

    +

    0

    單調(diào)遞減

    極小值

    單調(diào)遞增

    極大值

    單調(diào)遞減

    ,!上的最大值為2.

    ②當(dāng)時, .當(dāng)時, ,最大值為0;

    當(dāng)時, 上單調(diào)遞增!最大值為

    綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

    當(dāng)時,即時,在區(qū)間上的最大值為。

    (Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

    不妨設(shè),則,顯然

    是以O(shè)為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

    ,則代入(*)式得:

    ,而此方程無解,因此。此時

    代入(*)式得:    即   (**)

     ,則

    上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

    ∴對于,方程(**)總有解,即方程(*)總有解。

    因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

     

    查看答案和解析>>

    已知函數(shù)f(x)的定義域為(0,+∞),若y=
    f(x)
    x
    在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=
    f(x)
    x2
    在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
    (Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實數(shù)h的取值范圍;
    (Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
    x a b c a+b+c
    f(x) d d t 4
    求證:d(2d+t-4)>0;
    (Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請問:是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說明理由.

    查看答案和解析>>

    已知函數(shù)的定義域為,若上為增函數(shù),則稱為“一階比增函數(shù)”;若上為增函數(shù),則稱為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.

    (Ⅰ)已知函數(shù),若,求實數(shù)的取值范圍;

    (Ⅱ)已知,的部分函數(shù)值由下表給出,

     求證:;

    (Ⅲ)定義集合

    請問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

     

    查看答案和解析>>

    已知函數(shù)的定義域為,若上為增函數(shù),則稱為“一階比增函數(shù)”;若上為增函數(shù),則稱為“二階比增函數(shù)”.

    我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.

    (Ⅰ)已知函數(shù),若,求實數(shù)的取值范圍;

    (Ⅱ)已知,的部分函數(shù)值由下表給出,

     求證:;

    (Ⅲ)定義集合

    請問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

    查看答案和解析>>


    同步練習(xí)冊答案