亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (Ⅱ)是否存在常數(shù)c.使得函數(shù)內(nèi)有極值點(diǎn)?若存在.求出c的取值范圍,若不存在.請說明理由. 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù)f(x)=ax2+bx+c(a,b,c為實(shí)數(shù),a≠0),定義域D:[-1,1]
    (1)當(dāng)a=1,b=-1時(shí),若函數(shù)f(x)在定義域內(nèi)恒小于零,求c的取值范圍;
    (2)當(dāng)a=1,常數(shù)b<0時(shí),若函數(shù)f(x)在定義域內(nèi)恒不為零,求c的取值范圍;
    (3)當(dāng)b>2a>0時(shí),在D上是否存在x,使得|f(x)|>b成立?(要求寫出推理過程)

    查看答案和解析>>

    已知函數(shù)f(x)=ax2+bx+c(a,b,c為實(shí)數(shù),a≠0),定義域D:[-1,1]
    (1)當(dāng)a=1,b=-1時(shí),若函數(shù)f(x)在定義域內(nèi)恒小于零,求c的取值范圍;
    (2)當(dāng)a=1,常數(shù)b<0時(shí),若函數(shù)f(x)在定義域內(nèi)恒不為零,求c的取值范圍;
    (3)當(dāng)b>2a>0時(shí),在D上是否存在x,使得|f(x)|>b成立?(要求寫出推理過程)

    查看答案和解析>>

    已知二次函數(shù)f(x)=ax2+bx+c(a,b,c均為實(shí)常數(shù),且a≠0),滿足條件f(0)=f(2)=0,且方程f(x)=2x有兩個(gè)相等的實(shí)數(shù)根.
    (1)求函數(shù)f(x)的解析式;
    (2)試確定一個(gè)區(qū)間P,使得f(x)在P內(nèi)單調(diào)遞減且不等式f(x)≥0在P內(nèi)恒成立;
    (3)是否存在這樣的實(shí)數(shù)m、n,滿足m<n,使得f(x)在區(qū)間[m,n]內(nèi)的取值范圍恰好是[4m,4n]?如果存在,試求出m、n的值;如果不存在,請說明理由.

    查看答案和解析>>

    已知二次函數(shù)f(x)=ax2+bx+c(a,b,c均為實(shí)常數(shù),且a≠0),滿足條件f(0)=f(2)=0,且方程f(x)=2x有兩個(gè)相等的實(shí)數(shù)根.
    (1)求函數(shù)f(x)的解析式;
    (2)試確定一個(gè)區(qū)間P,使得f(x)在P內(nèi)單調(diào)遞減且不等式f(x)≥0在P內(nèi)恒成立;
    (3)是否存在這樣的實(shí)數(shù)m、n,滿足m<n,使得f(x)在區(qū)間[m,n]內(nèi)的取值范圍恰好是[4m,4n]?如果存在,試求出m、n的值;如果不存在,請說明理由.

    查看答案和解析>>

    已知二次函數(shù)f(x)=ax2+bx+c(a,b,c均為實(shí)常數(shù),且a≠0),滿足條件f(0)=f(2)=0,且方程f(x)=2x有兩個(gè)相等的實(shí)數(shù)根.
    (1)求函數(shù)f(x)的解析式;
    (2)試確定一個(gè)區(qū)間P,使得f(x)在P內(nèi)單調(diào)遞減且不等式f(x)≥0在P內(nèi)恒成立;
    (3)是否存在這樣的實(shí)數(shù)m、n,滿足m<n,使得f(x)在區(qū)間[m,n]內(nèi)的取值范圍恰好是[4m,4n]?如果存在,試求出m、n的值;如果不存在,請說明理由.

    查看答案和解析>>

    一、選擇題

    1.C 解析:關(guān)于y軸的對稱圖形,可得

    圖象,再向右平移一個(gè)單位,即可得的圖象,即的圖

      2,4,6

      2.A 解析:由題可知,故選A.

      3.D 解析:上恒成立,即恒成立,故選D.

      4.C  解析:令公比為q,由a1=3,前三項(xiàng)的和為21可得q2+q-6=0,各項(xiàng)都為正數(shù),所以q=2,所以,故選C.

      5.C  解析:由圖可知,陰影部分面積.

      6.A  解析:故在[-2,2]上最大值為,所以最小值為,故選A.

      7.A  解析:y值對應(yīng)1,x可對應(yīng)±1,y值對應(yīng)4,x可對應(yīng)±2,故定義域共有{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,2,-2},{-1,2,-2},{-,1,-2,2}共9種情況.

      8.B  可采取特例法,例皆為滿足條件的函數(shù),一一驗(yàn)證可知選B.

      二、填空題:

      9.答案:6   解析:∵     ∴a7+a­11=6.

      10.答案a=3、2π  解析:的上半圓

      面積,故為2π.

      11.答案:20  解析:由數(shù)列相關(guān)知識可知

      12.答案:

      解析:由題可知 ,故定義域?yàn)?sub>

      13.答案:2   解析:由a,b,c成等差數(shù)列知①,由②,

      由c>b>a知角B為銳角,③,聯(lián)立①②③得b=2.

    1. <sub id="66116"><optgroup id="66116"><track id="66116"></track></optgroup></sub>

      故當(dāng)時(shí),

      三、解答題:

      15.解:(Ⅰ)由題可知函數(shù)定義域關(guān)于原點(diǎn)對稱.

          當(dāng),

          則,

          ∴

          當(dāng)

          則

         ∴

          綜上所述,對于,∴函數(shù)是偶函數(shù).

      (Ⅱ)當(dāng)x>0時(shí),

      設(shè)

      當(dāng)

      ∴函數(shù)上是減函數(shù),函數(shù)上是增函數(shù).

      (另證:當(dāng);

      ∴函數(shù)上是減函數(shù),在上是增函數(shù).

      16.解:(Ⅰ)∵函數(shù)圖象過點(diǎn)A(0,1)、B(,1)

        ∴b=c

      ∵當(dāng)

        ③

      聯(lián)立②③得        

      (Ⅱ)①由圖象上所有點(diǎn)向左平移個(gè)單位得到的圖象

      ②由的圖象上所有點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?sub>倍,得到

      的圖象

      ③由的圖象上所有點(diǎn)向下平移一個(gè)單位,得到

      的圖象

      17.(1)證明:由題設(shè),得

      又a1-1=1,

      所以數(shù)列{an-n}是首項(xiàng)為1,且公比為4的等比數(shù)列.

      (Ⅱ)解:由(Ⅰ)可知,于是數(shù)列{ an }的通項(xiàng)公式為

      所以數(shù)列{an}的前n項(xiàng)和

      18.分析:求停車場面積,需建立長方形的面積函數(shù). 這里自變量的選取十分關(guān)鍵,通常有代數(shù)和三角兩種設(shè)未知數(shù)的方法,如果設(shè)長方形PQCR的一邊長為x(不妨設(shè)PR=x),則另一邊長,

      這樣SPQCR=PQ?PR=x?(100-),但該函數(shù)的最值不易求得,如果將∠BAP作為自變量,用它可表示PQ、PR,再建立面積函數(shù),則問題就容易得多,于是可求解如下;

      解:延長RP交AB于M,設(shè)∠PAB=,則

      AM=90

            <td id="rjvax"><strong id="rjvax"></strong></td>
            •        

              設(shè),   ∵

              ∴當(dāng),SPQCR有最大值

              答:長方形停車場PQCR面積的最大值為平方米.

              19.解:(Ⅰ)【方法一】由,

              依題設(shè)可知,△=(b+1)24c=0.

              .

              【方法二】依題設(shè)可知

              為切點(diǎn)橫坐標(biāo),

              于是,化簡得

              同法一得

              (Ⅱ)由

              可得

              依題設(shè)欲使函數(shù)內(nèi)有極值點(diǎn),

              則須滿足

              亦即 ,

              故存在常數(shù),使得函數(shù)內(nèi)有極值點(diǎn).

              (注:若,則應(yīng)扣1分. )

              20.解:(Ⅰ)設(shè)函數(shù)

                 (Ⅱ)由(Ⅰ)可知

              可知使恒成立的常數(shù)k=8.

              (Ⅲ)由(Ⅱ)知 

              可知數(shù)列為首項(xiàng),8為公比的等比數(shù)列

              即以為首項(xiàng),8為公比的等比數(shù)列. 則 

              .