亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    20. 查看更多

     

    題目列表(包括答案和解析)

    (本小題滿分14分)

    已知函數(shù)。

    (1)證明:

    (2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

    (3)設(shè)數(shù)列滿足:,設(shè)

    若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

    試求的最大值。

    查看答案和解析>>

    (本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

    (Ⅰ)當(dāng)點(diǎn)軸上移動時(shí),求動點(diǎn)的軌跡方程;

    (Ⅱ)過的直線與軌跡交于、兩點(diǎn),又過、作軌跡的切線、,當(dāng),求直線的方程.

    查看答案和解析>>

    (本小題滿分14分)設(shè)函數(shù)

     (1)求函數(shù)的單調(diào)區(qū)間;

     (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

     (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

    查看答案和解析>>

    (本小題滿分14分)

    已知,其中是自然常數(shù),

    (1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

    (2)求證:在(1)的條件下,;

    (3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

    查看答案和解析>>

    (本小題滿分14分)

    設(shè)數(shù)列的前項(xiàng)和為,對任意的正整數(shù),都有成立,記

    (I)求數(shù)列的通項(xiàng)公式;

    (II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對任意正整數(shù)都有;

    (III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

    查看答案和解析>>

    一、選擇題

    1.C 解析:關(guān)于y軸的對稱圖形,可得

    圖象,再向右平移一個(gè)單位,即可得的圖象,即的圖

    2,4,6

    2.A 解析:由題可知,故選A.

    3.D 解析:上恒成立,即恒成立,故選D.

    4.C  解析:令公比為q,由a1=3,前三項(xiàng)的和為21可得q2+q-6=0,各項(xiàng)都為正數(shù),所以q=2,所以,故選C.

    5.C  解析:由圖可知,陰影部分面積.

    6.A  解析:故在[-2,2]上最大值為,所以最小值為,故選A.

    7.A  解析:y值對應(yīng)1,x可對應(yīng)±1,y值對應(yīng)4,x可對應(yīng)±2,故定義域共有{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,2,-2},{-1,2,-2},{-,1,-2,2}共9種情況.

    8.B  可采取特例法,例皆為滿足條件的函數(shù),一一驗(yàn)證可知選B.

    二、填空題:

    9.答案:6   解析:∵     ∴a7+a­11=6.

    10.答案a=3、2π  解析:的上半圓

    面積,故為2π.

    11.答案:20  解析:由數(shù)列相關(guān)知識可知

    12.答案:

    解析:由題可知 ,故定義域?yàn)?sub>

    13.答案:2   解析:由a,b,c成等差數(shù)列知①,由②,

    由c>b>a知角B為銳角,③,聯(lián)立①②③得b=2.

    故當(dāng)時(shí),

    三、解答題:

    15.解:(Ⅰ)由題可知函數(shù)定義域關(guān)于原點(diǎn)對稱.

        當(dāng),

        則,

        ∴

        當(dāng)

        則

       ∴

        綜上所述,對于,∴函數(shù)是偶函數(shù).

    (Ⅱ)當(dāng)x>0時(shí),,

    設(shè)

    當(dāng)

    ∴函數(shù)上是減函數(shù),函數(shù)上是增函數(shù).

    (另證:當(dāng);

    ∴函數(shù)上是減函數(shù),在上是增函數(shù).

    16.解:(Ⅰ)∵函數(shù)圖象過點(diǎn)A(0,1)、B(,1)

      ∴b=c

    ∵當(dāng)

      ③

    聯(lián)立②③得        

    (Ⅱ)①由圖象上所有點(diǎn)向左平移個(gè)單位得到的圖象

    ②由的圖象上所有點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?sub>倍,得到

    的圖象

    ③由的圖象上所有點(diǎn)向下平移一個(gè)單位,得到

    的圖象

    17.(1)證明:由題設(shè),得

    又a1-1=1,

    所以數(shù)列{an-n}是首項(xiàng)為1,且公比為4的等比數(shù)列.

    (Ⅱ)解:由(Ⅰ)可知,于是數(shù)列{ an }的通項(xiàng)公式為

    所以數(shù)列{an}的前n項(xiàng)和

    18.分析:求停車場面積,需建立長方形的面積函數(shù). 這里自變量的選取十分關(guān)鍵,通常有代數(shù)和三角兩種設(shè)未知數(shù)的方法,如果設(shè)長方形PQCR的一邊長為x(不妨設(shè)PR=x),則另一邊長,

    這樣SPQCR=PQ?PR=x?(100-),但該函數(shù)的最值不易求得,如果將∠BAP作為自變量,用它可表示PQ、PR,再建立面積函數(shù),則問題就容易得多,于是可求解如下;

    解:延長RP交AB于M,設(shè)∠PAB=,則

    AM=90

          <td id="rjvax"><strong id="rjvax"></strong></td>

                <track id="us4nk"></track>

                  <pre id="us4nk"><xmp id="us4nk"><s id="us4nk"></s></xmp></pre>
                    1.        

                      設(shè),   ∵

                      ∴當(dāng),SPQCR有最大值

                      答:長方形停車場PQCR面積的最大值為平方米.

                      19.解:(Ⅰ)【方法一】由,

                      依題設(shè)可知,△=(b+1)24c=0.

                      .

                      【方法二】依題設(shè)可知

                      為切點(diǎn)橫坐標(biāo),

                      于是,化簡得

                      同法一得

                      (Ⅱ)由

                      可得

                      依題設(shè)欲使函數(shù)內(nèi)有極值點(diǎn),

                      則須滿足

                      亦即 ,

                      故存在常數(shù),使得函數(shù)內(nèi)有極值點(diǎn).

                      (注:若,則應(yīng)扣1分. )

                      20.解:(Ⅰ)設(shè)函數(shù)

                         (Ⅱ)由(Ⅰ)可知

                      可知使恒成立的常數(shù)k=8.

                      (Ⅲ)由(Ⅱ)知 

                      可知數(shù)列為首項(xiàng),8為公比的等比數(shù)列

                      即以為首項(xiàng),8為公比的等比數(shù)列. 則 

                      .