亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    在中.由三角形三邊之間的關系知: 查看更多

     

    題目列表(包括答案和解析)

    (1)一本書分別由1,2,3,4,5,6這些章組成,這些章之間存在著以下這些關系:學完第一章之后才能學后面的這幾章,第6章只能在最后學習,第3章要在第2章學完之后才能學習,第5章要在第4章學完之后才能學習.畫出這本書中各章的邏輯關系框圖.
    (2)有一道試題:有一個三角形,它的邊長分別為6cm,8cm,10cm,請判斷三角形的形狀.
    同學米虎的答案:
    由勾股定理知,凡是直角三角形都是斜邊的平方等于其他兩邊平方之和,這個三角形的一邊的平方等于其他兩邊平方之和,所以,這個三角形是直角三角形.
    請問:他的推理正確嗎?如不正確,請寫出正確的推理.

    查看答案和解析>>

    (1)一本書分別由1,2,3,4,5,6這些章組成,這些章之間存在著以下這些關系:學完第一章之后才能學后面的這幾章,第6章只能在最后學習,第3章要在第2章學完之后才能學習,第5章要在第4章學完之后才能學習.畫出這本書中各章的邏輯關系框圖.
    (2)有一道試題:有一個三角形,它的邊長分別為6cm,8cm,10cm,請判斷三角形的形狀.
    同學米虎的答案:
    由勾股定理知,凡是直角三角形都是斜邊的平方等于其他兩邊平方之和,這個三角形的一邊的平方等于其他兩邊平方之和,所以,這個三角形是直角三角形.
    請問:他的推理正確嗎?如不正確,請寫出正確的推理.

    查看答案和解析>>

    (1)一本書分別由1,2,3,4,5,6這些章組成,這些章之間存在著以下這些關系:學完第一章之后才能學后面的這幾章,第6章只能在最后學習,第3章要在第2章學完之后才能學習,第5章要在第4章學完之后才能學習.畫出這本書中各章的邏輯關系框圖.
    (2)有一道試題:有一個三角形,它的邊長分別為6cm,8cm,10cm,請判斷三角形的形狀.
    同學米虎的答案:
    由勾股定理知,凡是直角三角形都是斜邊的平方等于其他兩邊平方之和,這個三角形的一邊的平方等于其他兩邊平方之和,所以,這個三角形是直角三角形.
    請問:他的推理正確嗎?如不正確,請寫出正確的推理.

    查看答案和解析>>

    (1)一本書分別由1,2,3,4,5,6這些章組成,這些章之間存在著以下這些關系:學完第一章之后才能學后面的這幾章,第6章只能在最后學習,第3章要在第2章學完之后才能學習,第5章要在第4章學完之后才能學習.畫出這本書中各章的邏輯關系框圖.
    (2)有一道試題:有一個三角形,它的邊長分別為6cm,8cm,10cm,請判斷三角形的形狀.
    同學米虎的答案:
    由勾股定理知,凡是直角三角形都是斜邊的平方等于其他兩邊平方之和,這個三角形的一邊的平方等于其他兩邊平方之和,所以,這個三角形是直角三角形.
    請問:他的推理正確嗎?如不正確,請寫出正確的推理.

    查看答案和解析>>

    已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

    (Ⅰ)求實數(shù)的值; 

    (Ⅱ)求在區(qū)間上的最大值;

    (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

    【解析】第一問當時,,則。

    依題意得:,即    解得

    第二問當時,,令,結合導數(shù)和函數(shù)之間的關系得到單調性的判定,得到極值和最值

    第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

    不妨設,則,顯然

    是以O為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設要求的兩點P、Q.

    (Ⅰ)當時,,則。

    依題意得:,即    解得

    (Ⅱ)由(Ⅰ)知,

    ①當時,,令

    變化時,的變化情況如下表:

    0

    0

    +

    0

    單調遞減

    極小值

    單調遞增

    極大值

    單調遞減

    ,,。∴上的最大值為2.

    ②當時, .當時, ,最大值為0;

    時, 上單調遞增!最大值為。

    綜上,當時,即時,在區(qū)間上的最大值為2;

    時,即時,在區(qū)間上的最大值為。

    (Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

    不妨設,則,顯然

    是以O為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設要求的兩點P、Q.

    ,則代入(*)式得:

    ,而此方程無解,因此。此時

    代入(*)式得:    即   (**)

     ,則

    上單調遞增,  ∵     ∴,∴的取值范圍是。

    ∴對于,方程(**)總有解,即方程(*)總有解。

    因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

     

    查看答案和解析>>


    同步練習冊答案