亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    4.若“ .則函數(shù)=在區(qū)間上為增函數(shù),而若在區(qū)間上為增函數(shù).則0≤a≤1.所以“ 是“函數(shù)在區(qū)間上為增函數(shù) 的充分不必要條件.選A. 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù)f(x)=ex-ax,其中a>0.

    (1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

    (2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

    【解析】解:.

    當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

    于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

    當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

    故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

    綜上所述,的取值集合為.

    (Ⅱ)由題意知,

    ,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

    從而

    所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

    【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

     

    查看答案和解析>>

    已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

    (Ⅰ)求實(shí)數(shù)的值; 

    (Ⅱ)求在區(qū)間上的最大值;

    (Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

    【解析】第一問當(dāng)時(shí),,則。

    依題意得:,即    解得

    第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

    第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

    不妨設(shè),則,顯然

    是以O(shè)為直角頂點(diǎn)的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

    若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

    (Ⅰ)當(dāng)時(shí),,則。

    依題意得:,即    解得

    (Ⅱ)由(Ⅰ)知,

    ①當(dāng)時(shí),,令

    當(dāng)變化時(shí),的變化情況如下表:

    0

    0

    +

    0

    單調(diào)遞減

    極小值

    單調(diào)遞增

    極大值

    單調(diào)遞減

    ,!上的最大值為2.

    ②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

    當(dāng)時(shí), 上單調(diào)遞增!最大值為。

    綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

    當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為

    (Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

    不妨設(shè),則,顯然

    是以O(shè)為直角頂點(diǎn)的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

    若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

    ,則代入(*)式得:

    ,而此方程無解,因此。此時(shí),

    代入(*)式得:    即   (**)

     ,則

    上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

    ∴對(duì)于,方程(**)總有解,即方程(*)總有解。

    因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

     

    查看答案和解析>>

    已知函數(shù).(

    (1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

    (2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

    【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

    解:(1)在區(qū)間上單調(diào)遞增,

    在區(qū)間上恒成立.  …………3分

    ,而當(dāng)時(shí),,故. …………5分

    所以.                 …………6分

    (2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

    在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

            …………9分

    ① 若,令,得極值點(diǎn),,

    當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

    當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

    ,也不合題意;                     …………11分

    ② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

    要使在此區(qū)間上恒成立,只須滿足,

    由此求得的范圍是.        …………13分

    綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

     

    查看答案和解析>>

    已知函數(shù).

    (Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

    (Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

    【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。

    第二問中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

    解:(1)

    (2)不等式 ,即,即.

    轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

    即不等式上恒成立.

    即不等式上恒成立.

    設(shè),則.

    設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

    在區(qū)間上是減函數(shù)。又

    故存在,使得.

    當(dāng)時(shí),有,當(dāng)時(shí),有.

    從而在區(qū)間上遞增,在區(qū)間上遞減.

    [來源:]

    所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有

    故使命題成立的正整數(shù)m的最大值為5

     

    查看答案和解析>>

    (本小題滿分12分)已知函數(shù)

    (I)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;

    (II)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.

    (Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則,

    ,

    當(dāng)時(shí),;當(dāng)時(shí),

    在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

    即當(dāng)時(shí),函數(shù)取得極大值.                                       (3分)

    函數(shù)在區(qū)間上存在極值,

     ,解得                                            (4分)

    (2)不等式,即

    (6分)

    ,則

    ,即上單調(diào)遞增,                          (7分)

    ,從而,故上單調(diào)遞增,       (7分)

              (8分)

    (3)由(2)知,當(dāng)時(shí),恒成立,即,

    ,則,                               (9分)

                                                                           (10分)

    以上各式相加得,

    ,

                               

                                            (12分)

     

    查看答案和解析>>


    同步練習(xí)冊(cè)答案