亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    故f(x)在上遞增.在(1,2)上遞減. 因此f(x)在x=1處取得極大值.所以x0=1. (Ⅱ) (x)=3ax2+2bx+c, 由=0, f(1)=5, 得 解得a=2,b=-9,c=12. 解法二:(Ⅰ)同解法一. (Ⅱ)設(x)=m(x-1)(x-2)=mx2-3mx+2m, 又(x)=3ax2+2bx+c, 所以a=,b= 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù)f(x)=ex-ax,其中a>0.

    (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

    (2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

    【解析】解:.

    單調遞減;當單調遞增,故當時,取最小值

    于是對一切恒成立,當且僅當.        ①

    時,單調遞增;當時,單調遞減.

    故當時,取最大值.因此,當且僅當時,①式成立.

    綜上所述,的取值集合為.

    (Ⅱ)由題意知,

    ,則.當時,單調遞減;當時,單調遞增.故當,

    從而,

    所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

    【點評】本題考查利用導函數(shù)研究函數(shù)單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質進行分析判斷.

     

    查看答案和解析>>


    同步練習冊答案