題目列表(包括答案和解析)
A、
| ||||
B、
| ||||
C、2<x<
| ||||
D、
|
A、(8,10) | ||||
B、(
| ||||
C、(
| ||||
D、(
|
A.1<x<5B.<x<
C.1<x<
D.
<x<5
已知銳角三角形的邊長(zhǎng)分別為1、3、,則
的取值范圍是( )
A. B.
C.
D.
已知銳角三角形的邊長(zhǎng)分別為2、4、,則
的取值范圍是____________
一、 選擇題:CACDA,ADCBB.
二、
填空題:11.(-4,2) 12. 13.-4 14. 12
15.
三、解答題(16~18題,每題13分,19-21題12分,共75分)
16.解:∵
∴
∴
17.證明一:(利用共線向量的判定定理證明)
以作為基底,有:
,
,從而
, 所以A、E、F共線。
證明二:(利用三點(diǎn)共線的判定定理證明)
,而:
,所以A、E、F共線。
(可以建立坐標(biāo)系,利用求出等比分點(diǎn)坐標(biāo)公式求出E、F的坐標(biāo),再證明A、E、F共線)
18.(1)f(x)=sin2x-
(1+cos2x)+
=
sin2x-
cos2x
=sin(2x-) 5分
∴T=
=π 2分
(2)函數(shù)y=f(x)的圖象按=(φ,0)(φ>0)平移后,得y=sin(2(x-φ)-
) 2分,此函數(shù)圖象對(duì)稱軸方程為2(x-φ)-
=kπ+
k∈Z ,又f(x)平移后關(guān)于y軸對(duì)稱,∴x=0滿足上式有2(0-φ)-
=kπ+
,∴φ=-
π-
k∈Z
2分
∵φ>0∴當(dāng)k=-1時(shí),φmin= 2分
19.(1)由已知得-
=(sinθ,2)-(-2,co sθ)=(sinθ+2,2-cosθ) 1分 ∵
⊥
-
∴
?(
-
)=0
∴(cosθ,sinθ)(sinθ+2,2-cosθ)=0
∴cosθ(sinθ+2)+sinθ(2-cosθ)=0 2分
∴2cosθ+2sinθ=0 ∴tanθ=-1 ∵θ∈(-π,π)
∴θ=-或θ=
3分
(2)由已知=
+
-
=(cosθ+sinθ+2,sinθ+2-cosθ) 1分
∴||2=(cosθ+sinθ+2)2+(sinθ+2-cosθ)2=10+8sinθ 2分
∵||≤
∴10+8sinθ≤14 ∴sinθ≤
∵θ∈(-π,π)
∴θ∈ 3分
20.輪船從點(diǎn)C到點(diǎn)B耗時(shí)60分鐘,從點(diǎn)B到點(diǎn)E耗時(shí)20分鐘,而船始終勻速,可見BC=3EB
2分
設(shè)EB=x,則BC=3x,由條件知∠BAE=60°,在△ABE中,由正弦定理得 ①
在△ABC中,由正弦定理得 ②
2分
由條件∠BAC=30°+30°=60° ∴sin∠BAC=sin∠BAE
又∠ABC+∠ABE=180° ∴sin∠BAC=sin(180°-∠ABC)=sin∠ABE 2分
結(jié)合①②得=
∴AC=3AE 2分
在△ACE中,由余弦定理,得
CE2=AC2+AE2-2AC?AE?cos120°=9AE2+AE2+3AE2=13AE2=13×∴CE=20 2分 ∴BC=15 ∴船速v=15km/t 2分
21.解: 可以組建命題一:△ABC中,若a、b、c成等差數(shù)列,求證:(1)0<B≤
(2);
命題二:△ABC中,若a、b、c成等差數(shù)列求證:(1)0<B≤
(2)1<≤
命題三:△ABC中,若a、b、c成等差數(shù)列,求證:(1)
(2)1<≤
命題四:△ABC中,若a、b、c成等比數(shù)列,求證:(1)0<B≤
(2)1<≤
………………………………………………………………………………………………6分
下面給出命題一、二、三的證明:
(1)∵a、b、c成等差數(shù)列∴2b=a+c,∴b=
≥
且B∈(0,π),∴0<B≤
(2)
(3)
∵0<B≤ ∴
∴
∴
下面給出命題四的證明:
(4)∵a、b、c成等比數(shù)列∴b2=a+c,
且B∈(0,π),∴0<B≤…14分
評(píng)分時(shí)若構(gòu)建命題的結(jié)論僅一個(gè)但給出了正確證明,可判7分;若構(gòu)建命題完全正確但論證僅正確給出一個(gè),可判10分;若組建命題出現(xiàn)了錯(cuò)誤,應(yīng)判0分,即堅(jiān)持錯(cuò)不得分原則
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com