亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (2)由題意得,即 , () ① 查看更多

     

    題目列表(包括答案和解析)

    (本題滿分12分) 設(shè)函數(shù)),

    (1) 將函數(shù)圖象向右平移一個(gè)單位即可得到函數(shù)的圖象,試寫(xiě)出的解析式及值域;

    (2) 關(guān)于的不等式的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)的取值范圍;

    (3) 對(duì)于函數(shù)定義域上的任意實(shí)數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設(shè),試探究是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

     

     

    查看答案和解析>>

    解析:依題意得f(x)的圖象關(guān)于直線x=1對(duì)稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數(shù)f(x)是以4為周期的函數(shù).由f(x)在[3,5]上是增函數(shù)與f(x)的圖象關(guān)于直線x=1對(duì)稱得,f(x)在[-3,-1]上是減函數(shù).又函數(shù)f(x)是以4為周期的函數(shù),因此f(x)在[1,3]上是減函數(shù),f(x)在[1,3]上的最大值是f(1),最小值是f(3).

    答案:A

    查看答案和解析>>

    ((本小題共13分)

    若數(shù)列滿足,數(shù)列數(shù)列,記=.

    (Ⅰ)寫(xiě)出一個(gè)滿足,且〉0的數(shù)列

    (Ⅱ)若,n=2000,證明:E數(shù)列是遞增數(shù)列的充要條件是=2011;

    (Ⅲ)對(duì)任意給定的整數(shù)n(n≥2),是否存在首項(xiàng)為0的E數(shù)列,使得=0?如果存在,寫(xiě)出一個(gè)滿足條件的E數(shù)列;如果不存在,說(shuō)明理由。

    【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數(shù)列A5。

    (答案不唯一,0,1,0,1,0也是一個(gè)滿足條件的E的數(shù)列A5

    (Ⅱ)必要性:因?yàn)镋數(shù)列A5是遞增數(shù)列,所以.所以A5是首項(xiàng)為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因?yàn)閍1=12,a2000=2011,所以a2000=a1+1999.故是遞增數(shù)列.綜上,結(jié)論得證。

     

     

    查看答案和解析>>

    拓展探究題
    (1)已知兩個(gè)圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對(duì)稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個(gè)更一般的命題,而已知命題應(yīng)成為所推廣命題的一個(gè)特例.推廣的命題為
    已知兩個(gè)圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對(duì)稱軸方程
    已知兩個(gè)圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對(duì)稱軸方程

    (2)平面幾何中有正確命題:“正三角形內(nèi)任意一點(diǎn)到三邊的距離之和等于定值,大小為邊長(zhǎng)的
    3
    2
    倍”,請(qǐng)你寫(xiě)出此命題在立體幾何中類(lèi)似的真命題:
    正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和是一個(gè)定值,大小為棱長(zhǎng)的
    6
    3
    正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和是一個(gè)定值,大小為棱長(zhǎng)的
    6
    3

    查看答案和解析>>

    拓展探究題
    (1)已知兩個(gè)圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對(duì)稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個(gè)更一般的命題,而已知命題應(yīng)成為所推廣命題的一個(gè)特例.推廣的命題為_(kāi)_____.
    (2)平面幾何中有正確命題:“正三角形內(nèi)任意一點(diǎn)到三邊的距離之和等于定值,大小為邊長(zhǎng)的
    3
    2
    倍”,請(qǐng)你寫(xiě)出此命題在立體幾何中類(lèi)似的真命題:______.

    查看答案和解析>>


    同步練習(xí)冊(cè)答案