題目列表(包括答案和解析)
已知點為圓
上的動點,且
不在
軸上,
軸,垂足為
,線段
中點
的軌跡為曲線
,過定點
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點。
(I)求曲線的方程;
(II)試證明:在軸上存在定點
,使得
總能被
軸平分
【解析】第一問中設(shè)為曲線
上的任意一點,則點
在圓
上,
∴,曲線
的方程為
第二問中,設(shè)點的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線的方程
,可得
∵,∴
確定結(jié)論直線與曲線
總有兩個公共點.
然后設(shè)點,
的坐標(biāo)分別
,
,則
,
要使被
軸平分,只要
得到。
(1)設(shè)為曲線
上的任意一點,則點
在圓
上,
∴,曲線
的方程為
. ………………2分
(2)設(shè)點的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線的方程
,可得
,……5分
∵,∴
,
∴直線與曲線
總有兩個公共點.(也可根據(jù)點M在橢圓
的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點,
的坐標(biāo)分別
,
,則
,
要使被
軸平分,只要
,
………………9分
即,
, ………………10分
也就是,
,
即,即只要
………………12分
當(dāng)時,(*)對任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點,使得
總能被
軸平分
解關(guān)于的不等式:
.
(12分)
甲、乙兩名籃球運動員每場比賽得分情況的莖葉圖如圖,則甲和乙得分的中位數(shù)的和是 ( )
56分
57分
58分
59分
某種汽車,購車費用是10萬元,每年使用的保險費和汽油費為萬元,年維修費第一年為
萬元,以后逐年遞增
萬元,問這種汽車使用多少年時,它的年平均費用最少? (12分)
解關(guān)于的不等式:
.
(12分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com