亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    綜上可知.存在直角三形.此時(shí)a的值為... ------18分 查看更多

     

    題目列表(包括答案和解析)

    已知數(shù)列的前項(xiàng)和為,且 (N*),其中

    (Ⅰ) 求的通項(xiàng)公式;

    (Ⅱ) 設(shè) (N*).

    ①證明: ;

    ② 求證:.

    【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到,②由于,

    所以利用放縮法,從此得到結(jié)論。

    解:(Ⅰ)當(dāng)時(shí),由.  ……2分

    若存在,

    從而有,與矛盾,所以.

    從而由.  ……6分

     (Ⅱ)①證明:

    證法一:∵

     

    .…………10分

    證法二:,下同證法一.           ……10分

    證法三:(利用對(duì)偶式)設(shè),,

    .又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                        ………10分

    證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

       ②假設(shè)時(shí),命題成立,即,

       則當(dāng)時(shí),

        即

    故當(dāng)時(shí),命題成立.

    綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

    ②由于,

    所以,

    從而.

    也即

     

    查看答案和解析>>

    (2012•普陀區(qū)一模)給出問(wèn)題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
    (i)a•
    b2+c2-a2
    2bc
    =b•
    a2+c2-b2
    2ac
    ?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
    故△ABC是直角三角形.
    (ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
    故△ABC是等腰三角形.
    綜上可知,△ABC是等腰直角三角形.
    請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果
    等腰或直角三角形
    等腰或直角三角形

    查看答案和解析>>

    給出問(wèn)題:已知滿足,試判定的形狀.某學(xué)生的解答如下:

    解:(i)由余弦定理可得,

    ,

    ,

    ,

    是直角三角形.

    (ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價(jià)于

    ,

    是等腰三角形.

    綜上可知,是等腰直角三角形.

    請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果.           .

     

    查看答案和解析>>

    給出問(wèn)題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
    (i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
    故△ABC是直角三角形.
    (ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
    故△ABC是等腰三角形.
    綜上可知,△ABC是等腰直角三角形.
    請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果   

    查看答案和解析>>

    給出問(wèn)題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
    (i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
    故△ABC是直角三角形.
    (ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
    故△ABC是等腰三角形.
    綜上可知,△ABC是等腰直角三角形.
    請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果   

    查看答案和解析>>


    同步練習(xí)冊(cè)答案