亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (3)若直線斜率存在.設為.代入 查看更多

     

    題目列表(包括答案和解析)

    已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為

    (Ⅰ)求橢圓C的標準方程;

    (Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

    【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關系的運用。

    第一問中,可設橢圓的標準方程為 

    則由長軸長等于4,即2a=4,所以a=2.又,所以,

    又由于 

    所求橢圓C的標準方程為

    第二問中,

    假設存在這樣的直線,設,MN的中點為

     因為|ME|=|NE|所以MNEF所以

    (i)其中若時,則K=0,顯然直線符合題意;

    (ii)下面僅考慮情形:

    ,得,

    ,得

    代入1,2式中得到范圍。

    (Ⅰ) 可設橢圓的標準方程為 

    則由長軸長等于4,即2a=4,所以a=2.又,所以,

    又由于 

    所求橢圓C的標準方程為

     (Ⅱ) 假設存在這樣的直線,設,MN的中點為

     因為|ME|=|NE|所以MNEF所以

    (i)其中若時,則K=0,顯然直線符合題意;

    (ii)下面僅考慮情形:

    ,得,

    ,得……②  ……………………9分

    代入①式得,解得………………………………………12分

    代入②式得,得

    綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

     

    查看答案和解析>>

    已知曲線上動點到定點與定直線的距離之比為常數(shù)

    (1)求曲線的軌跡方程;

    (2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

    (3)以曲線的左頂點為圓心作圓,設圓與曲線交于點與點,求的最小值,并求此時圓的方程.

    【解析】第一問利用(1)過點作直線的垂線,垂足為D.

    代入坐標得到

    第二問當斜率k不存在時,檢驗得不符合要求;

    當直線l的斜率為k時,;,化簡得

    第三問點N與點M關于X軸對稱,設,, 不妨設

    由于點M在橢圓C上,所以

    由已知,則

    由于,故當時,取得最小值為

    計算得,,故,又點在圓上,代入圓的方程得到.  

    故圓T的方程為:

     

    查看答案和解析>>

    已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

    (Ⅰ)求實數(shù)的值; 

    (Ⅱ)求在區(qū)間上的最大值;

    (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

    【解析】第一問當時,,則。

    依題意得:,即    解得

    第二問當時,,令,結合導數(shù)和函數(shù)之間的關系得到單調性的判定,得到極值和最值

    第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

    不妨設,則,顯然

    是以O為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設要求的兩點P、Q.

    (Ⅰ)當時,,則。

    依題意得:,即    解得

    (Ⅱ)由(Ⅰ)知,

    ①當時,,令

    變化時,的變化情況如下表:

    0

    0

    +

    0

    單調遞減

    極小值

    單調遞增

    極大值

    單調遞減

    ,,!上的最大值為2.

    ②當時, .當時, ,最大值為0;

    時, 上單調遞增!最大值為

    綜上,當時,即時,在區(qū)間上的最大值為2;

    時,即時,在區(qū)間上的最大值為。

    (Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

    不妨設,則,顯然

    是以O為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設要求的兩點P、Q.

    ,則代入(*)式得:

    ,而此方程無解,因此。此時,

    代入(*)式得:    即   (**)

     ,則

    上單調遞增,  ∵     ∴,∴的取值范圍是。

    ∴對于,方程(**)總有解,即方程(*)總有解。

    因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

     

    查看答案和解析>>


    同步練習冊答案