題目列表(包括答案和解析)
A.Q∪R=P∪M B.RM
P
Q
C.Q=RM=P D.R
P
M
Q
A.PQ=R
S B.S
P
Q=R
C.S=PQ=R D.S
P
Q
R
π |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
A.4個(gè) | B.3個(gè) | C.2個(gè) | D.1個(gè) |
已知集合M={直線的傾斜角},集合N={兩條異面直線所成的角},集合P={直線與平面所成的角},則下列結(jié)論中正確的個(gè)數(shù)為 ( )
①(M∩N)∩P=(0, ②(M∩N)∪P=(0,π
③(M∩N)∪P=(0, ④(M∩N)∩P=(0,
)
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
一、選擇題:(本大題共10小題,每小題5分,共50分)
1 B
A 3
文C(理C) 4
D 5
文A(理B) 6
文B(理C) 7
文C(理C) 8
文C(理A) 9
文A (理D) 10
文D(理A)
三、解答題:(本大題共6個(gè)解答題,滿分76分,)
線為y軸建立平面直角坐標(biāo)系如圖所示,
則A(-4,0),N(4,0),設(shè)P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐標(biāo)得:
整理得:
即
所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)
(理)解:(I)當(dāng)a=1時(shí)
或
或
或
(II)原不等式
設(shè)有
當(dāng)且僅當(dāng)
即時(shí)
解得
若由方程組解得
,可參考給分
(理)解:(Ⅰ)設(shè) (a≠0),則
…… ①
…… ②
又∵有兩等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)無(wú)極值
∴方程
得
或
或
或
(II)原不等式
設(shè)有
當(dāng)且僅當(dāng)
即時(shí)
(理)解:以AN所在直線為x軸,AN的中垂
線為y軸建立平面直角坐標(biāo)系如圖所示,
則A(-4,0),N(4,0),設(shè)P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐標(biāo)得:
整理得:
即
所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)
…… ①
…… ②
又∵有兩等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)無(wú)極值
∴方程
得
(理)解:(I)設(shè) (1)
又故
(2)
由(1),(2)解得
(II)由向量與向量
的夾角為
得
由及A+B+C=
知A+C=
則
由0<A<得
,得
故的取值范圍是
Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3
所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+
a1=6,進(jìn)而可知an+3
所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,
所以3+an=6,即an=3(
)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com