亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    6.若是互不相同的空間直線.是不重合的平面.則下列命題中為真命題的是 查看更多

     

    題目列表(包括答案和解析)

    是互不相同的空間直線,是不重合的平面,則下列命題中為真命題的是

    A.若,則     B.若,則

    C.              D.若,則

     

    查看答案和解析>>

    是互不相同的空間直線,是不重合的平面,則下列命題中為真命題的是(  )

    A.若,則      B.若,則

     C.若,則             D.若,則

     

    查看答案和解析>>

    是互不相同的空間直線,是不重合的平面,下列命題正確的是 ( )
    A.若,則B.若,則
    C.若,則D.若,則

    查看答案和解析>>

    是互不相同的空間直線,是不重合的平面,則下列命題中為真命題的是( 。
    A.若,則B.若,則
    C.若,則D.若,則

    查看答案和解析>>

    是互不相同的空間直線,是不重合的平面,則下列命題中為真命題的是
    A.若,則B.若,則
    C.D.若,則

    查看答案和解析>>

    一、選擇題     DBDAC    DCCCD    CB 

          <td id="rjvax"><strong id="rjvax"></strong></td>

                  1. 天星

                    13.;           14.-10,2;   15.;              16.540

                    三、簡(jiǎn)答題

                    17.(1),

                              cosC=,C=

                       (2)c2=a2+b2-2abcosC,c=,=a2+b2-ab=(a+b)2-3ab.

                    S=abs1nC=abs1n=ab=

                                Ab=6,(a+b)2=+3ab=+18=,a+b=

                    18.方法一:(1)解:取AD中點(diǎn)O,連結(jié)PO,BO.

                                  △PAD是正三角形,所以PO⊥AD,…………1分

                                  又因?yàn)槠矫鍼AD⊥平面ABCD,所以,PO⊥平面ABCD, …………3分

                                  BO為PB在平面ABCD上的射影, 

                    所以∠PBO為PB與平面ABCD所成的角.…………4分

                                  由已知△ABD為等邊三角形,所以PO=BO=

                    所以PB與平面ABCD所成的角為45°     ………5分

                       (2)△ABD是正三角形,所以AD⊥BO,所以AD⊥PB,  ………………6分

                                  又,PA=AB=2,N為PB中點(diǎn),所以AN⊥PB,    ………………8分

                                  所以PB⊥平面ADMN.              ………………9分

                       (3)連結(jié)ON,因?yàn)镻B⊥平面ADMN,所以O(shè)N為PO在平面ADMN上的射影,

                                  因?yàn)锳D⊥PO,所以AD⊥NO,             ………………11分

                                  故∠PON為所求二面角的平面角.            ………………12分

                                  因?yàn)椤鱌OB為等腰直角三角形,N為斜邊中點(diǎn),所以∠PON=45°,

                    19.(1)隨意抽取4件產(chǎn)品檢查是隨機(jī)事件,而第一天有9件正品

                               第一天通過(guò)檢查的概率為               ……5分

                    (2)同(1),第二天通過(guò)檢查的概率為           ……7分

                              因第一天,第二天是否通過(guò)檢查相互獨(dú)立

                              所以,兩天全部通過(guò)檢查的概率為:           ……10分

                    (3)記得分為,則的值分別為0,1,2

                                                 ……11分

                                                ……12分

                                                         ……13分

                    因此,    

                    20.(1)yn=2logaxn,yn+1=2logaxn+1 ,yn+1 ? yn=2[logaxn+1 ? logaxn]=2loga

                    {xn}為等比數(shù),為定值,所以{yn}為等差數(shù)列

                    又因?yàn)閥6- y3=3d=-6,d=-2,y1=y3-2d =22,

                    Sn=22n+= - n2+23n,故當(dāng)n=11或n=12時(shí),Sn取得最大值132

                    (2)yn=22+(n-1)(-2)=2logaxn,xn=a12n>1

                    當(dāng)a>1時(shí),12-n>0,   n<12;當(dāng)0<a<1時(shí),12-n<0   n>12,

                                  所以當(dāng)0<a<1時(shí),存在M=12,當(dāng)n>M時(shí),xn>1恒成立。

                    21.(1)設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

                    ,解得,所以

                    當(dāng)且僅當(dāng)時(shí),取到最大值

                    (2)由

                    ,

                    .  ②

                    設(shè)的距離為,則,又因?yàn)?sub>,

                    所以,代入②式并整理,得,

                    解得,代入①式檢驗(yàn),

                    故直線的方程是

                    ,或

                    22.(1)由K=e得f(x)=ex-ex, 所以f’(x)=ex-e. 由f’(x)>0得x>1,故f(x)的單調(diào)增區(qū)間

                    為(1,+∞),由f’(x)<0得x<1,故f(x)的單調(diào)遞減區(qū)間為(-∞,1)(3分)

                       (2)由f(|x|)>0對(duì)任意x∈R成立等價(jià)于f(x)>0對(duì)任意x≥0成立。由f’(x)=ex-k=0得x=lnk.  

                    ①當(dāng)k∈(0,1) 時(shí) ,f’(x)=ex-k ≥1-k≥0(x>0),此時(shí)f(x)在(0,+∞上單調(diào)遞增,故f(x)

                    ≥f(0)==1>),符合題意。②當(dāng)k∈(1,+∞)時(shí),lnk>0,當(dāng)X變化時(shí),f’(x)、f(x)的變化情況

                    如下表:

                    X

                    (0,lnk)

                    lnk

                    (lnk,+ ∞)

                    f’(x)

                    0

                    +

                    f(x)

                    單調(diào)遞減

                    極小值

                    單調(diào)遞增

                     

                     

                     

                    由此可得,在(0,+∞)上f(x)≥f(lnk)=k-lnk.依題意,k-klnk>0,又k>1,所以1<k<e.

                    綜上所述,實(shí)數(shù)k的取值范圍是0<k<e.  (8分)

                        (3)因?yàn)镕(x)=f(x)+f(-x)=ex+ex,所以F(x1)F(x2)=

                    ,

                    所以F(1)F(    n)>en+1+2,F(2)F(n-1)>en+1+2……F(n)F(1)>en+1+2.

                    由此得,[F(1)F(2)…F(n)]2=[F(1)F(n)][F(2)F(n-1)]…[F(n)F(1)]>(en+1+2)n

                    故F(1)F(2)…F(n)>(en+1+2) ,n∈N*     …….12分