題目列表(包括答案和解析)
在函數(shù)的圖象上有
、
、
三點(diǎn),橫坐標(biāo)分別為
其中
.
⑴求的面積
的表達(dá)式;
⑵求的值域.
【解析】由題意利用分割可先表示三角形ABC的面積,然后應(yīng)用對數(shù)運(yùn)算性質(zhì)及二次函數(shù)的性質(zhì)求解函數(shù)的最大值,屬于知識的簡單綜合.
如圖,四棱柱中,
平面
,底面
是邊長為
的正方形,側(cè)棱
.
(1)求三棱錐的體積;
。ǎ玻┣笾本與平面
所成角的正弦值;
(3)若棱上存在一點(diǎn)
,使得
,當(dāng)二面角
的大小為
時(shí),求實(shí)數(shù)
的值.
【解析】(1)在中,
.
(3’)
(2)以點(diǎn)D為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則
(4’)
,設(shè)平面
的法向量為
,
由得
,
(5’)
則,
. (7’)
(3)
設(shè)平面的法向量為
,由
得
,
(10’)
已知曲線的參數(shù)方程是
(
是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
:的極坐標(biāo)方程是
=2,正方形ABCD的頂點(diǎn)都在
上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2,
).
(Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為上任意一點(diǎn),求
的取值范圍.
【命題意圖】本題考查了參數(shù)方程與極坐標(biāo),是容易題型.
【解析】(Ⅰ)由已知可得,
,
,
,
即A(1,),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)設(shè),令
=
,
則=
=
,
∵,∴
的取值范圍是[32,52]
已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,
為其前n項(xiàng)和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式
和數(shù)列
的前n項(xiàng)和
;
(2)若對任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,,
[
又時(shí),
滿足
,
,
第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
第三問,
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時(shí),
滿足
,
,
.
(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時(shí)n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時(shí),數(shù)列中的
成等比數(shù)列
如圖,直線與拋物線
交于
兩點(diǎn),與
軸相交于點(diǎn)
,且
.
(1)求證:點(diǎn)的坐標(biāo)為
;
(2)求證:;
(3)求的面積的最小值.
【解析】設(shè)出點(diǎn)M的坐標(biāo),并把過點(diǎn)M的方程設(shè)出來.為避免對斜率不存在的情況進(jìn)行討論,可以設(shè)其方程為
,然后與拋物線方程聯(lián)立消x,根據(jù)
,即可建立關(guān)于
的方程.求出
的值.
(2)在第(1)問的基礎(chǔ)上,證明:即可.
(3)先建立面積S關(guān)于m的函數(shù)關(guān)系式,根據(jù)建立即可,然后再考慮利用函數(shù)求最值的方法求最值.
1. 構(gòu)造向量,
,所以
,
.由數(shù)量積的性質(zhì)
,得
,即
的最大值為2.
2. ∵,令
得
,所以
,當(dāng)
時(shí),
,當(dāng)
時(shí),
,所以當(dāng)
時(shí),
.
3.∵,∴
,
,又
,∴
,則
,所以周期
.作出
在
上的圖象知:若
,滿足條件的
(
)存在,且
,
關(guān)于直線
對稱,
,
關(guān)于直線
對稱,∴
;若
,滿足條件的
(
)存在,且
,
關(guān)于直線
對稱,
,
關(guān)于直線
對稱,
∴
.
4. 不等式(
)表示的區(qū)域是如圖所示的菱形的內(nèi)部,
∵,
當(dāng),點(diǎn)
到點(diǎn)
的距離最大,此時(shí)
的最大值為
;
當(dāng),點(diǎn)
到點(diǎn)
的距離最大,此時(shí)
的最大值為3.
5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:
(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;
(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.
于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.
6. ∵
,∴
,
設(shè),
,則
.
作出該不等式組表示的平面區(qū)域(圖中的陰影部分).
令,則
,它表示斜率為
的一組平行直線,易知,當(dāng)它經(jīng)過點(diǎn)
時(shí),
取得最小值.
解方程組,得
,∴
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com