題目列表(包括答案和解析)
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結合拋物線的焦點坐標得到,又因為
,這樣可知得到
。第二問中設直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用
可以結合韋達定理求解得到m的值和圓p的方程。
解:(Ⅰ)設橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、
………………8分
………………………9分
……………………………10分
當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
在復平面內, 是原點,向量
對應的復數(shù)是
,
=2+i。
(Ⅰ)如果點A關于實軸的對稱點為點B,求向量對應的復數(shù)
和
;
(Ⅱ)復數(shù),
對應的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結論。
【解析】第一問中利用復數(shù)的概念可知得到由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=
第二問中,由題意得,=(2,1)
∴
同理,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O為圓心,為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i 3分
∵ (2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四點在同一個圓上。 2分
證明:由題意得,=(2,1)
∴
同理,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O為圓心,為半徑的圓上
d |
2 |
DA |
DB |
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com