題目列表(包括答案和解析)
已知數(shù)列滿足
且對一切
,
有
(Ⅰ)求證:對一切
(Ⅱ)求數(shù)列通項公式.
(Ⅲ)求證:
【解析】第一問利用,已知表達式,可以得到,然后得到
,從而求證
。
第二問,可得數(shù)列的通項公式。
第三問中,利用放縮法的思想,我們可以得到
然后利用累加法思想求證得到證明。
解: (1) 證明:
在棱長為的正方體
中,
是線段
的中點,
.
(1) 求證:^
;
(2) 求證://平面
;
(3) 求三棱錐的表面積.
【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運用。第一問中,利用,得到結(jié)論,第二問中,先判定
為平行四邊形,然后
,可知結(jié)論成立。
第三問中,是邊長為
的正三角形,其面積為
,
因為平面
,所以
,
所以是直角三角形,其面積為
,
同理的面積為
,
面積為
. 所以三棱錐
的表面積為
.
解: (1)證明:根據(jù)正方體的性質(zhì),
因為,
所以,又
,所以
,
,
所以^
.
………………4分
(2)證明:連接,因為
,
所以為平行四邊形,因此
,
由于是線段
的中點,所以
, …………6分
因為面
,
平面
,所以
∥平面
. ……………8分
(3)是邊長為
的正三角形,其面積為
,
因為平面
,所以
,
所以是直角三角形,其面積為
,
同理的面積為
,
……………………10分
面積為
. 所以三棱錐
的表面積為
已知函數(shù), 其中
.
(1)當時,求曲線
在點
處的切線方程;
(2)當時,求曲線
的單調(diào)區(qū)間與極值.
【解析】第一問中利用當時,
,
,得到切線方程
第二問中,
對a分情況討論,確定單調(diào)性和極值問題。
解: (1) 當時,
,
………………………….2分
切線方程為:
…………………………..5分
(2)
…….7
分
分類: 當時, 很顯然
的單調(diào)增區(qū)間為:
單調(diào)減區(qū)間:
,
,
………… 11分
當時
的單調(diào)減區(qū)間:
單調(diào)增區(qū)間:
,
,
已知函數(shù),數(shù)列
的項滿足:
,(1)試求
(2) 猜想數(shù)列的通項,并利用數(shù)學歸納法證明.
【解析】第一問中,利用遞推關(guān)系,
,
第二問中,由(1)猜想得:然后再用數(shù)學歸納法分為兩步驟證明即可。
解: (1) ,
,
…………….7分
(2)由(1)猜想得:
(數(shù)學歸納法證明)i) ,
,命題成立
ii) 假設(shè)時,
成立
則時,
綜合i),ii) : 成立
(1)求f(x)的表達式;
(2)設(shè)x1=2,xn=f(xn-1)(n=2,3,…),求證:數(shù)列{}成等差數(shù)列;
(3)在條件(2)下,求{xn}的通項公式.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com