題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點
.
(1)求函數(shù)的解析式(2)求函數(shù)
在區(qū)間
上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:;
(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當恒成立,求a的取值范圍;
(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.(本小題滿分12分)已知是橢圓
的兩個焦點,O為坐標原點,點
在橢圓上,且
,圓O是以
為直徑的圓,直線
與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當時,求弦長|AB|的取值范圍.
一、
1.B 2.A 3.D 4.D 5.C 6.B 7.A 8.C 9.D 10.A
11.A 12.B
1.由題意知
,解得
或
,故選B.
2.原不等式即為,化得
,解得
.故選A.
3.由條件.對上
,所以
又,所以
.故選D.
4.設到
的角為
的斜率
的斜率
,
則,于是
.故選D.
5.由解得
,即其反函數(shù)為
,又在原函數(shù)中由
得
,即其反函數(shù)中
.故選C.
6.不等式組化得 或
平面區(qū)域如圖所示,陰影部分面積:
,故選B.
7.由已知得,而
.故選A.
8..故選c.
9.令,則
,即
的圖象關于(0,0)點對稱,將
的圖象向下平移6個單位.得題中函數(shù)的圖象,則它的對稱中心為(0,
).故選D.
10..故選A.
11.由條件得:,則
得
,所以
.故選A.
12.由已知正三棱柱的高為球的直徑,底面正三角形的內(nèi)切圓是球的大圓.設底面正三角形的邊長為,球半徑為
,則
,又
,解得
,則
,于是
.故選B.
二、
13.與
平行,
,解得
即
14.設數(shù)列的公比為
,則
,兩式相除,得
,則
.
所以.
15.由題意知,直線是拋物線
的準線,而
到
的距離等于
到焦點
的距離.即求點
到點
的距離與到點
的距離和的最小值,就是點
與點
的距離,為
.
16.一方面.由條件,,得
,故②正確.
另一方面,如圖,在正方體中,把
、
分別記作
、
,平面
、平面
、平面
分別記作
、
、
,就可以否定①與③.
三、
17.解:,且
,即
又.
由正弦定理
又
即的取值范圍是區(qū)間
.
18.解:(1)設甲、乙兩人通過測試的事件分別為、
,則
,
、
相互獨立,∴甲、乙兩人中只有1人通過測試的概率
.
(2)甲答對題數(shù)的所有可能值為
∴甲答對題數(shù)的數(shù)學期望為
.
19.解:(1)由已知,∴數(shù)列
的公比
,首項
又數(shù)列中,
的公差
,首項
(
時也成立)
∴數(shù)列、
的通項公式依次為
.
(2)記
當時,
和
都是增函數(shù)
即時,
是增函數(shù)
當
4時,
;
又
時
或
,∴不存在
,使
.
20.(1)證明;在直三棱柱中,
面
又
面
,而
面
,
∴平面平面
(2)解:取中點
,連接
交
于點
,則
.
與平面
所成角的大小等于
與平面
所成角的大小,取
中點
,連接
、
,則等腰三角形
中,
.
又由(1)得面
.
面
為直線
與面
所成的角
又
,
∴直線與平面
所成的角為
.
(注:本題也可以能過建立空間直角坐標系解答)
21.解:(1)設橢圓方程為,雙曲線方程為
,半焦距
由已知得,解得
,則
故橢圓及雙曲線方程分別為及
.
(2)由向量的數(shù)量積公式知,表示向量
與
夾角的余弦值,設
,即求
的值.
由余弦定理得 ①
由橢圓定義得 ②
由雙曲線定義得 ③
式②+式③得,式②一式③
得
將它們代人式①得,解得
,
所以.
22,解:(1)由
得
要使在(0,1]上恒為單調(diào)函數(shù),只需
或
在(0,1]上恒成立.
∴只需或
在(0,1]上恒成立
記
或
(2),
∴由得
化簡得
時有
,即
,
則
①
構造函數(shù),則
在
處取得極大值,也是最大值.
在
范圍內(nèi)恒成立,而
從而在
范圍內(nèi)恒成立.
∴在時,
而時,
,∴當
時,
恒成立
即時,總有
②
由式①和式②可知,實數(shù)的取值范圍是
.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com