亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (II)求隨機變量的概率分布,(III)求甲取到白球的概率. 查看更多

     

    題目列表(包括答案和解析)

    (理)已知甲,乙兩名射擊運動員各自獨立地射擊1次,命中10環(huán)的概率分別為
    1
    2
    ,x(x>
    1
    2
    );且乙運動員在2次獨立射擊中恰有1次命中10環(huán)的概率為
    4
    9

    (I)求x的值;
    (II)若甲,乙兩名運動員各自獨立地射擊1次,設(shè)兩人命中10環(huán)的次數(shù)之和為隨機變量ξ,求ξ的分布列及數(shù)學(xué)期望.

    查看答案和解析>>

     

    (14分)(理)袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到兩人中有一人取到白球時既終止,每個球在每一次被取出的機會是等可能的,用表示取球終止所需要的取球次數(shù).

     (I)求袋中所有的白球的個數(shù);

     (II)求隨機變量的概率分布;

     (III)求甲取到白球的概率.

     

    查看答案和解析>>


    (14分)(理)袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到兩人中有一人取到白球時既終止,每個球在每一次被取出的機會是等可能的,用表示取球終止所需要的取球次數(shù).
    (I)求袋中所有的白球的個數(shù);
    (II)求隨機變量的概率分布;
    (III)求甲取到白球的概率.

    查看答案和解析>>

    (理)某單位有8名員工,其中有5名員工曾經(jīng)參加過一種或幾種技能培訓(xùn),另外3名員工沒有參加過任何技能培訓(xùn),現(xiàn)要從8名員工中任選3人參加一種新的技能培訓(xùn);
    (I)求恰好選到1名曾經(jīng)參加過技能培訓(xùn)的員工的概率;
    (II)這次培訓(xùn)結(jié)束后,仍然沒有參加過任何技能培訓(xùn)的員工人數(shù)X是一個隨機變量,求X的分布列和數(shù)學(xué)期望.

    查看答案和解析>>

    (理)已知甲,乙兩名射擊運動員各自獨立地射擊1次,命中10環(huán)的概率分別為
    1
    2
    ,x(x>
    1
    2
    );且乙運動員在2次獨立射擊中恰有1次命中10環(huán)的概率為
    4
    9

    (I)求x的值;
    (II)若甲,乙兩名運動員各自獨立地射擊1次,設(shè)兩人命中10環(huán)的次數(shù)之和為隨機變量ξ,求ξ的分布列及數(shù)學(xué)期望.

    查看答案和解析>>

    一.選擇題:

    題號

    1

    2

    3

    4

    5

    6

    7

    8

    答案

    C

    A

    C

    B

    B

    A

    B

    D

    二.填空題:

    9.6、30、10;                 10.?5;               11.;

    12.?250;                     13.;              14.③④

    三.解答題:

    15.解: ;  ………5分

    方程有非正實數(shù)根

     

    綜上: ……………………12分16.解:(I)設(shè)袋中原有個白球,由題意知

    可得(舍去)

    答:袋中原有3個白球. 。。。。。。。。4分

    (II)由題意,的可能取值為1,2,3,4,5

     

    所以的分布列為:

    1

    2

    3

    4

    5

    。。。。。。。。。9分

    (III)因為甲先取,所以甲只有可能在第一次,第三次和第5次取球,記”甲取到白球”為事件,則

    答:甲取到白球的概率為.。。。。。。。。13分

    17.解:(1)由.,∴=1;。。。。。。。。。4分

    (2)任取、∈(1,+∞),且設(shè),則:

    >0,

    在(1,+∞)上是單調(diào)遞減函數(shù);。。。。。。。。。8分

    (3)當(dāng)直線∈R)與的圖象無公共點時,=1,

    <2+=4=,|-2|+>2,

    得:.。。。。。。。。13分

    18.(Ⅰ)證明:∵底面,底面, ∴

       又∵平面,平面,

        ∴平面;3分

    (Ⅱ)解:∵點分別是的中點,

    ,由(Ⅰ)知平面,

    平面

    ,

    為二面角的平面角,

    底面,∴與底面所成的角即為,

    ,∵為直角三角形斜邊的中點,

    為等腰三角形,且,∴;

    (Ⅲ)過點于點,∵底面,

       ∴底面,為直線在底面上的射影,

       要,由三垂線定理的逆定理有要 ,

     設(shè),則由,

     又∴在直角三角形中,

    ,

    ∵ ,,

    在直角三角形中,,

     ,即時,

    (Ⅲ)以點為坐標原點,建立如圖的直角坐標系,設(shè),則,設(shè),則

    ,,,

    ,時時,.

     

     

    19  證明:(1)對任意x1, x2∈R, 當(dāng) a0,

    =                         =……(3分)

    ∴當(dāng)時,,即

      當(dāng)時,函數(shù)f(x)是凸函數(shù).   ……(4分)

     (2) 當(dāng)x=0時, 對于a∈R,有f(x)≤1恒成立;當(dāng)x∈(0, 1]時, 要f(x)≤1恒成立

    , ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 當(dāng)=1時, 取到最小值為0,∴ a≤0, 又a≠0,∴ a的取值范圍是.

    由此可知,滿足條件的實數(shù)a的取值恒為負數(shù),由(1)可知函數(shù)f(x)是凸函數(shù)………10分

    (3)令,∵,∴,……………..(11)分

    ,則,故;

    ,則

    ;,……………..(12)分

    ,則;∴時,.

    綜上所述,對任意的,都有;……………..(13)分

    所以,不是R上的凸函數(shù). ……………..(14)分

    對任意,有

    所以,不是上的凸函數(shù). ……………..(14)分

    20. 解:(1)設(shè)數(shù)列的前項和為,則

    ……….4分

    (2)為偶數(shù)時,

    為奇數(shù)時,

    ………9分

    (3)方法1、因為所以

    當(dāng),時,

    又由,兩式相減得

     所以若,則有………..14分

    方法2、由,兩式相減得

    ………..11分

    所以要證明,只要證明

    或①由:

    所以…………………14分

    或②由:

    …………………14分

    數(shù)學(xué)歸納法:①當(dāng)

    當(dāng)

    ②當(dāng)

    當(dāng)

    綜上①②知若,則有.

    所以,若,則有.。。。。。。。。。14分

     

     


    同步練習(xí)冊答案