題目列表(包括答案和解析)
在中,已知
,面積
,
(1)求的三邊的長;
(2)設(shè)是
(含邊界)內(nèi)的一點(diǎn),
到三邊
的距離分別是
①寫出所滿足的等量關(guān)系;
②利用線性規(guī)劃相關(guān)知識求出的取值范圍.
【解析】第一問中利用設(shè)中角
所對邊分別為
由得
又由得
即
又由得
即
又
又
得
即的三邊長
第二問中,①得
故
②
令依題意有
作圖,然后結(jié)合區(qū)域得到最值。
如圖,長方體中,底面
是正方形,
是
的中點(diǎn),
是棱
上任意一點(diǎn)。
(Ⅰ)證明: ;
(Ⅱ)如果=2 ,
=
,
, 求
的長。
【解析】(Ⅰ)因底面是正方形,故,又側(cè)棱垂直底面,可得
,而
,所以
面
,因
,所以
面
,又
面
,所以
;
(Ⅱ)因=2 ,
=
,,可得
,
,設(shè)
,由
得
,即
,解得
,即
的長為
。
已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓C;其長軸長等于4,離心率為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)(0,1), 問是否存在直線
與橢圓
交于
兩點(diǎn),且
?若存在,求出
的取值范圍,若不存在,請說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運(yùn)用。
第一問中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以
,
又由于
所求橢圓C的標(biāo)準(zhǔn)方程為
第二問中,
假設(shè)存在這樣的直線,設(shè)
,MN的中點(diǎn)為
因?yàn)閨ME|=|NE|所以MNEF所以
(i)其中若時(shí),則K=0,顯然直線
符合題意;
(ii)下面僅考慮情形:
由,得,
,得
代入1,2式中得到范圍。
(Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以
,
又由于
所求橢圓C的標(biāo)準(zhǔn)方程為
(Ⅱ) 假設(shè)存在這樣的直線,設(shè)
,MN的中點(diǎn)為
因?yàn)閨ME|=|NE|所以MNEF所以
(i)其中若時(shí),則K=0,顯然直線
符合題意;
(ii)下面僅考慮情形:
由,得,
,得
……② ……………………9分
則.
代入①式得,解得………………………………………12分
代入②式得,得
.
綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是
設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC頂點(diǎn)C的軌跡方程;
(Ⅱ)設(shè)頂點(diǎn)C的軌跡為D,已知直線過點(diǎn)(0,1)并且與曲線D交于P、N兩點(diǎn),若O為坐標(biāo)原點(diǎn),滿足OP⊥ON,求直線
的方程.
【解析】
第一問因?yàn)樵O(shè)C(x,y)()
……3分
∵M(jìn)是不等邊三解形ABC的外心,∴|MA|=|MC|,即(2)
由(1)(2)得.所以三角形頂點(diǎn)C的軌跡方程為
,
.…6分
第二問直線l的方程為y=kx+1
由消y得
。 ∵直線l與曲線D交于P、N兩點(diǎn),∴△=
,
又,
∵,∴
得到直線方程。
已知數(shù)列滿足
(I)求數(shù)列
的通項(xiàng)公式;
(II)若數(shù)列中
,前
項(xiàng)和為
,且
證明:
【解析】第一問中,利用,
∴數(shù)列{}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即
第二問中,
進(jìn)一步得到得 即
即是等差數(shù)列.
然后結(jié)合公式求解。
解:(I) 解法二、,
∴數(shù)列{}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即
(II)
………②
由②可得: …………③
③-②,得 即
…………④
又由④可得 …………⑤
⑤-④得
即是等差數(shù)列.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com