亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    解析:(1)由題意可知.又.解得. 查看更多

     

    題目列表(包括答案和解析)

    已知m>1,直線,橢圓C:,分別為橢圓C的左、右焦點.

    (Ⅰ)當(dāng)直線過右焦點時,求直線的方程;

    (Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[

    【解析】第一問中因為直線經(jīng)過點,0),所以,得.又因為m>1,所以,故直線的方程為

    第二問中設(shè),由,消去x,得,

    則由,知<8,且有

    由題意知O為的中點.由可知從而,設(shè)M是GH的中點,則M().

    由題意可知,2|MO|<|GH|,得到范圍

     

    查看答案和解析>>

    如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

    (Ⅰ)證明PC⊥AD;

    (Ⅱ)求二面角A-PC-D的正弦值;

    (Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

     

    【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

    (1)證明:易得,于是,所以

    (2) ,設(shè)平面PCD的法向量,

    ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

    所以二面角A-PC-D的正弦值為.

    (3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

    ,故 

    所以,,解得,即.

    解法二:(1)證明:由,可得,又由,,故.又,所以.

    (2)如圖,作于點H,連接DH.由,,可得.

    因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

    因此所以二面角的正弦值為.

    (3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

    中,由,,

    可得.由余弦定理,,

    所以.

     

    查看答案和解析>>

    已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

    (Ⅰ)求橢圓E的方程;

    (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

    【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標(biāo)得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

    ,再利用可以結(jié)合韋達定理求解得到m的值和圓p的方程。

    解:(Ⅰ)設(shè)橢圓E的方程為

    ①………………………………1分

      ②………………2分

      ③       由①、②、③得a2=12,b2=6…………3分

    所以橢圓E的方程為…………………………4分

    (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

     代入橢圓E方程,得…………………………6分

    ………………………7分

    、………………8分

    ………………………9分

    ……………………………10分

        當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

    圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

    同理,當(dāng)m=-3時,直線l方程為y=-x-3,

    圓P的方程為(x+2)2+(y+1)2=4

     

    查看答案和解析>>

    已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

    (1)求f(x)的解析式;

    (2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

    【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

    (2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

    然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

    解:(1)f′(x)=3ax2+2bx+c

    依題意

    又f′(0)=-3

    ∴c=-3 ∴a=1 ∴f(x)=x3-3x

    (2)設(shè)切點為(x0,x03-3x0),

    ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

    ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

    又切線過點A(2,m)

    ∴m-(x03-3x0)=(3x02-3)(2-x0)

    ∴m=-2x03+6x02-6

    令g(x)=-2x3+6x2-6

    則g′(x)=-6x2+12x=-6x(x-2)

    由g′(x)=0得x=0或x=2

    ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

    ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

    畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,

    所以m的取值范圍是(-6,2).

     

    查看答案和解析>>

    已知函數(shù) R).

    (Ⅰ)若 ,求曲線  在點  處的的切線方程;

    (Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

    【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。

    第一問中,利用當(dāng)時,

    因為切點為(), 則,                 

    所以在點()處的曲線的切線方程為:

    第二問中,由題意得,即可。

    Ⅰ)當(dāng)時,

    ,                                  

    因為切點為(), 則,                  

    所以在點()處的曲線的切線方程為:.    ……5分

    (Ⅱ)解法一:由題意得,.      ……9分

    (注:凡代入特殊值縮小范圍的均給4分)

    ,           

    因為,所以恒成立,

    上單調(diào)遞增,                            ……12分

    要使恒成立,則,解得.……15分

    解法二:                 ……7分

          (1)當(dāng)時,上恒成立,

    上單調(diào)遞增,

    .                  ……10分

    (2)當(dāng)時,令,對稱軸,

    上單調(diào)遞增,又    

    ① 當(dāng),即時,上恒成立,

    所以單調(diào)遞增,

    ,不合題意,舍去  

    ②當(dāng)時,, 不合題意,舍去 14分

    綜上所述: 

     

    查看答案和解析>>


    同步練習(xí)冊答案