題目列表(包括答案和解析)
已知函數(shù)是R上的增函數(shù),則
的取值范圍是( )
A、≤
<0 B、
≤
≤
C、
≤
D、
<0
已知函數(shù)是R上的增函數(shù),則a的取值范圍是( )
A.(,+∞)
B.(-∞,
) C.[
,+∞)
D.(-∞,
]
已知函數(shù)是R上的增函數(shù),則
的取值范圍是( )
A.![]() ![]() | B.![]() ![]() ![]() | C.![]() ![]() | D.![]() |
1.D 2.C 3.C 4.D 5.A 6.D 7.B 8.C 9.A 10.B
11.B 12.D
13. 14.
15. 11 16.
17.(本小題滿分12分)
解:(1)
又
(2)
又
18.(本小題滿分12分)
解:(1)
∴
∴
(2)∵
∴
最小正周期為
由
得
故的單調遞增區(qū)間為
19.(本小題滿分12分)
解:(1)成等差數(shù)列,
(2)
20、(本小題滿分12分)
(I)解:由得
,
(II)由,
∴數(shù)列{}是以S1+1=2為首項,以2為公比的等比數(shù)列,
當n=1時a1=1滿足
(III)①
,②
①-②得,
則.
21、(本小題滿分12分) (1)證明:
(即
的對稱軸
)
(2)由(1).
經判斷:極小
為0;
.
22、(本小題滿分12分)
解:(1)由橢圓定義及已知條件知2a=|F1B|+|F2B|=10,∴a=5.
又c=4,∴b2=a2-c2=9.
故橢圓方程為+
=1.
(2)由點B在橢圓上,可知|F2B|=|yB|=,而橢圓的右準線方程為x=
,離心率為
,
由橢圓定義有|F2A|=(
-x1),|F2C|=
(
-x2).
依題意|F2A|+|F2C|=2|F2B|.
則(
-x1)+
(
-x2)=2×
.
∴x1+x2=8.
設弦AC的中點為P(x0,y0),則x0==4,
即弦AC的中點的橫坐標為4.
(3)由A(x1,y1),C(x2,y2)在橢圓上得9x12+25y12=9×25,9x22+25y22=9×25.
兩式相減整理得9()+25(
)(
)=0(x1≠x2).
將=x0=4,
=y0,
=-
(k≠0)代入得
9×4+25y0(-)=0,即k=
y0.
由于P(4,y0)在弦AC的垂直平分線上,
∴y0=4k+m,于是m=y0-4k=y0-y0=-
y0.
而-<y0<
,∴-
<m<
.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com