亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    A. B. C. D.第二卷 非選擇題 查看更多

     

    題目列表(包括答案和解析)

    已知均為正數(shù),,則的最小值是            (    )

             A.            B.           C.             D.

    第Ⅱ卷  (非選擇題  共90分)

    二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上。

    查看答案和解析>>

    設(shè)奇函數(shù)的定義域為R,最小正周期,若,則的取值范圍是

    A.      B.

    C.        D.

        

    第Ⅱ卷(非選擇題  共90分)

    二、填空題:本大題共4小題,每小題4分,共16分.

    查看答案和解析>>

    2006年普通高等學(xué)校招生全國統(tǒng)一考試(北京卷)

    理科綜合能力測試試題卷(生物部分)

    1.以下不能說明細(xì)胞全能性的實驗是

    A.胡蘿卜韌皮部細(xì)胞培育出植株            B.紫色糯性玉米種子培育出植株

    C.轉(zhuǎn)入抗蟲基因的棉花細(xì)胞培育出植株      D.番茄與馬鈴薯體細(xì)胞雜交后培育出植株

    2.夏季,在晴天、陰天、多云、高溫干旱四種天氣條件下,獼猴桃的凈光合作用強(qiáng)度(實際光合速率與呼吸速率之差)變化曲線不同,表示晴天的曲線圖是

    3.用蔗糖、奶粉和經(jīng)蛋白酶水解后的玉米胚芽液,通過乳酸菌發(fā)酵可生產(chǎn)新型酸奶,下列相關(guān)敘述錯誤的是

    A.蔗糖消耗量與乳酸生成量呈正相關(guān)        B.酸奶出現(xiàn)明顯氣泡說明有雜菌污染

    C.應(yīng)選擇處于對數(shù)期的乳酸菌接種          D.只有奶粉為乳酸菌發(fā)酵提供氮源

    4.用32P標(biāo)記了玉米體細(xì)胞(含20條染色體)的DNA分子雙鏈,再將這些細(xì)胞轉(zhuǎn)入不含32P的培養(yǎng)基中培養(yǎng),在第二次細(xì)胞分裂的中期、后期,一個細(xì)胞中的染色體總條數(shù)和被32P標(biāo)記的染色體條數(shù)分別是

    A.中期20和20、后期40和20             B.中期20和10、后期40和20

    C.中期20和20、后期40和10             D.中期20和10、后期40和10

    29.(12分)為合理利用水域資源,某調(diào)查小組對一個開放性水庫生態(tài)系統(tǒng)進(jìn)行了初步調(diào)查,部分?jǐn)?shù)據(jù)如下表:

    (1)浮游藻類屬于該生態(tài)系統(tǒng)成分中的          ,它處于生態(tài)系統(tǒng)營養(yǎng)結(jié)構(gòu)中的         

    (2)浮游藻類數(shù)量少,能從一個方面反映水質(zhì)狀況好。調(diào)查數(shù)據(jù)分析表明:該水體具有一定的       能力。

    (3)浮游藻類所需的礦質(zhì)營養(yǎng)可來自細(xì)菌、真菌等生物的          ,生活在水庫淤泥中的細(xì)菌代謝類型主要為          。

    (4)該水庫對游人開放一段時間后,檢測發(fā)現(xiàn)水體己被氮、磷污染。為確定污染源是否來自游人,應(yīng)檢測

              處浮游藻類的種類和數(shù)量。

    30.(18分)為豐富植物育種的種質(zhì)資源材料,利用鈷60的γ射線輻射植物種子,篩選出不同性狀的突變植株。請回答下列問題:

    (1)鈷60的γ輻射用于育種的方法屬于          育種。

    (2)從突變材料中選出高產(chǎn)植株,為培育高產(chǎn)、優(yōu)質(zhì)、抗鹽新品種,利用該植株進(jìn)行的部分雜交實驗如下:

    ①控制高產(chǎn)、優(yōu)質(zhì)性狀的基因位于        對染色體上,在減數(shù)分裂聯(lián)會期        (能、不能)配對。

    ②抗鹽性狀屬于          遺傳。

    (3)從突變植株中還獲得了顯性高蛋白植株(純合子)。為驗證該性狀是否由一對基因控制,請參與實驗設(shè)計并完善實驗方案:

    ①步驟1:選擇                    雜交。

    預(yù)期結(jié)果:                                                  。

    ②步驟2:                                                  。

    預(yù)期結(jié)果:                                                  。

    ③觀察實驗結(jié)果,進(jìn)行統(tǒng)計分析:如果                    相符,可證明該性狀由一對基因控制。

     

    31.(18分)為研究長跑中運(yùn)動員體內(nèi)的物質(zhì)代謝及其調(diào)節(jié),科學(xué)家選擇年齡、體重相同,身體健康的8名男性運(yùn)動員,利用等熱量的A、B兩類食物做了兩次實驗。

    實驗還測定了糖和脂肪的消耗情況(圖2)。

    請據(jù)圖分析回答問題:

    (1)圖1顯示,吃B食物后,          濃度升高,引起          濃度升高。

    (2)圖1顯示,長跑中,A、B兩組胰島素濃度差異逐漸          ,而血糖濃度差異卻逐漸          ,A組血糖濃度相對較高,分析可能是腎上腺素和          也參與了對血糖的調(diào)節(jié),且作用相對明顯,這兩種激素之間具有          作用。

    (3)長跑中消耗的能量主要來自糖和脂肪。研究表明腎上腺素有促進(jìn)脂肪分解的作用。從能量代謝的角度分析圖2,A組脂肪消耗量比B組          ,由此推測A組糖的消耗量相對          。

    (4)通過檢測尿中的尿素量,還可以了解運(yùn)動員在長跑中          代謝的情況。

     

    參考答案:

    1.B              2.B              3.D             4.A

    29.(12分)

        (1)生產(chǎn)者    第一營養(yǎng)級

        (2)自動調(diào)節(jié)(或自凈化)

        (3)分解作用    異養(yǎng)厭氧型

        (4)入水口

    30.(18分)

        (1)誘變

        (2)①兩(或不同)    不能

        ②細(xì)胞質(zhì)(或母系)

        (3)①高蛋白(純合)植株    低蛋白植株(或非高蛋白植株)

        后代(或F1)表現(xiàn)型都是高蛋白植株

        ②測交方案:

        用F1與低蛋白植株雜交

        后代高蛋白植株和低蛋白植株的比例是1:1

        或自交方案:

        F1自交(或雜合高蛋白植株自交)

        后代高蛋白植株和低蛋白植株的比例是3:1

        ③實驗結(jié)果    預(yù)期結(jié)果

    31.(18分)

        (1)血糖    胰島素

        (2)減小    增大    胰高血糖素    協(xié)同

        (3)高    減少

        (4)蛋白質(zhì)

     

     

                                                 

     

    查看答案和解析>>

    一、ADBCC  CCBBA  DC

    二、13. ,;14. ;15. .16.

    三、

    17.

    解: (Ⅰ)由, 是三角形內(nèi)角,得……………..

    ………………………………………..

      …………………………………………………………6分

    (Ⅱ) 在中,由正弦定理, ,

    , ,

    由余弦定理得:

                    =………………………………12分

    18.

    解:(I)已知

           只須后四位數(shù)字中出現(xiàn)2個0和2個1.

                                                 …………4分

       (II)的取值可以是1,2,3,4,5,.

          

                                                                  …………8分

           的分布列是

       

    1

    2

    3

    4

    5

    P

                                                                                                          …………10分

                     …………12分

       (另解:記

           .)

    19.

    證明: 解法一:(1)取PC中點M,連結(jié)ME、MF,則MF∥CD,MF=CD,又AE∥CD,AE=CD,∴AE∥MF,且AE=MF,∴四邊形AFME是平行四邊形,∴AF∥EM,∵AF平面PCE,∴AF∥平面PCE. …………………………………(4分)

             (2)∵PA⊥平面ABCD,CD⊥AD. ∴CD⊥PD,∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°,   ………………………………………………………………(6分)

    ∴△PAD是等腰直角三角形,∴AF⊥PD,又AF⊥CD,∴AF⊥平面PCD,而EM∥AF,∴EM⊥平面PCD. 又EM平面PEC,∴面PEC⊥面PCD. 在平面PCD內(nèi)過F作FH⊥PC于H,則FH就是點F到平面PCE的距離. …………………………………(10分)

    由已知,PD=,PF=,PC=,△PFH∽△PCD,∴,

    ∴FH=.           ………………………………………………………………(12分)

           解法二:(1)取PC中點M,連結(jié)EM,

    =+=,∴AF∥EM,又EM平面PEC,AF平面PEC,∴AF∥平面PEC. ………………………………………(4分)

    (2)以A為坐標(biāo)原點,分別以所在直線為x、y、z

    軸建立坐標(biāo)系. ∵PA⊥平面ABCD,CD⊥AD,∴CD⊥PD,

    ∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°. ……(6分)

    ∴A(0, 0, 0), P(0, 0, 2), D(0, 2, 0), F(0, 1, 1), E, C(3, 2, 0),

    設(shè)平面PCE的法向量為=(x, y, z),則,而=(-,0,2),

    =(,2,0),∴-x+2z=0,且x+2y=0,解得y=-x,z=x. 取x=4

    =(4, -3, 3),………………………………………………………………(10分)

    =(0,1,-1),

    故點F到平面PCE的距離為d=.…………(12分)

     

    20.

     解:1)函數(shù).又,故為第一象限角,且.

       函數(shù)圖像的一條對稱軸方程式是: c為半點焦距,

       由知橢圓C的方程可化為

                                 (1)

       又焦點F的坐標(biāo)為(),AB所在的直線方程為

                                   (2)                     (2分)

      (2)代入(1)展開整理得

                          (3)

       設(shè)A(),B(),弦AB的中點N(),則是方程(3)的兩個不等的實數(shù)根,由韋達(dá)定理得

                           (4)

          

            

             即為所求。                    (5分)

    2)是平面內(nèi)的兩個不共線的向量,由平面向量基本定理,對于這一平面內(nèi)的向量,有且只有一對實數(shù)使得等式成立。設(shè)由1)中各點的坐標(biāo)可得:

    又點在橢圓上,代入(1)式得

         

    化為:        (5)

       由(2)和(4)式得

       兩點在橢圓上,故1有入(5)式化簡得:

                   

    得到是唯一確定的實數(shù),且,故存在角,使成立,則有

    ,則存在角使等式成立;若于是用代換,同樣證得存在角使等式:成立.

    綜合上述,對于任意一點,總存在角使等式:成立.

                                                                         (12分)

    21.解:(Ⅰ)  

    所以函數(shù)上是單調(diào)減函數(shù). …………………………4分

     (Ⅱ) 證明:據(jù)題意x1<x2<x3,

    由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=…………………………6分

    …………………8分

    即ㄓ是鈍角三角形……………………………………..9分

    (Ⅲ) 假設(shè)ㄓ為等腰三角形,則只能是

     

     

     

      ①          …………………………………………

    而事實上,    ②

    由于,故(2)式等號不成立.這與式矛盾. 所以ㄓ不可能為等腰三角形..13分

     

    22.

    解:⑴∵,又,為遞增數(shù)列即為,

    當(dāng)時,恒成立,當(dāng)時,的最大值為! !郻的取值范圍是:                   (6分)

    ⑵     ①又       ②

    ①-②:

    ,

    當(dāng)時,有成立,

    同號,于是由遞推關(guān)系得同號,因此只要就可推導(dǎo)。又

    ,又    ,

    即首項的取值范圍是

                                                                          (13分)


    同步練習(xí)冊答案