亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (Ⅱ) 求證:ㄓ是鈍角三角形, 查看更多

     

    題目列表(包括答案和解析)

    已知銳角△ABC中的三個(gè)內(nèi)角分別為A,B,C.
    (1)設(shè)
    BC
    CA
    =
    CA
    AB
    ,求證△ABC是等腰三角形;
    (2)設(shè)向量
    s
    =(2sinC,-
    3
    )
    ,
    t
    =(cos2C,2cos2
    C
    2
    -1)
    ,且
    s
    t
    ,若sinA=
    12
    13
    ,求sin(
    π
    3
    -B)
    的值.

    查看答案和解析>>

    (2005•南匯區(qū)一模)已知數(shù)列{an}的前n項(xiàng)和Sn=50n-n2(n∈N*
    (1)求證{an}是等差數(shù)列.
    (2)設(shè)bn=|an|,求數(shù)列{bn}的前n項(xiàng)和Tn
    (3)求
    lim
    n→∞
    Sn
    Tn
    )的值.

    查看答案和解析>>

    7、已知空間四點(diǎn)A、B、C、D和兩平面M、N,又知A、B、C、D在M內(nèi)的射影A1B1C1D1是一條直線,在N內(nèi)的射影A2B2C2D2是一個(gè)平行四邊形,求證ABCD是一個(gè)平行四邊形.

    查看答案和解析>>

    數(shù)列{an}滿足a1=2,an+1=an2+6an+6(n∈N*).
    (1)設(shè)Cn=log5(an+3),求證{Cn}是等比數(shù)列;
    (2)求數(shù)列{an}的通項(xiàng)公式;
    (3)設(shè)bn=
    1
    an-6
    -
    1
    a
    2
    n
    +6an
    ,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<-
    1
    4

    查看答案和解析>>

    已知數(shù)列{an}滿足:a1=1,an+1=
    1
    2
    an+n,n為奇數(shù)
    an-2n,n為偶數(shù)

    (1)求a2、a3、a4、a5;
    (2)設(shè)bn=a2n-2,n∈N,求證{bn}是等比數(shù)列,并求其通項(xiàng)公式;
    (3)在(2)條件下,求證數(shù)列{an}前100項(xiàng)中的所有偶數(shù)項(xiàng)的和S100<100.

    查看答案和解析>>

    一、ADBCC  CCBBA  DC

    二、13. ,;14. ;15. .16.

    三、

    17.

    解: (Ⅰ)由, 是三角形內(nèi)角,得……………..

    ………………………………………..

      …………………………………………………………6分

    (Ⅱ) 在中,由正弦定理,

    , ,

    由余弦定理得:

                    =………………………………12分

    18.

    解:(I)已知

           只須后四位數(shù)字中出現(xiàn)2個(gè)0和2個(gè)1.

                                                 …………4分

       (II)的取值可以是1,2,3,4,5,.

          

                                                                  …………8分

           的分布列是

       

    1

    2

    3

    4

    5

    P

                                                                                                          …………10分

                     …………12分

       (另解:記

           .)

    19.

    證明: 解法一:(1)取PC中點(diǎn)M,連結(jié)ME、MF,則MF∥CD,MF=CD,又AE∥CD,AE=CD,∴AE∥MF,且AE=MF,∴四邊形AFME是平行四邊形,∴AF∥EM,∵AF平面PCE,∴AF∥平面PCE. …………………………………(4分)

             (2)∵PA⊥平面ABCD,CD⊥AD. ∴CD⊥PD,∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°,   ………………………………………………………………(6分)

    ∴△PAD是等腰直角三角形,∴AF⊥PD,又AF⊥CD,∴AF⊥平面PCD,而EM∥AF,∴EM⊥平面PCD. 又EM平面PEC,∴面PEC⊥面PCD. 在平面PCD內(nèi)過F作FH⊥PC于H,則FH就是點(diǎn)F到平面PCE的距離. …………………………………(10分)

    由已知,PD=,PF=,PC=,△PFH∽△PCD,∴,

    ∴FH=.           ………………………………………………………………(12分)

           解法二:(1)取PC中點(diǎn)M,連結(jié)EM,

    =+=,∴AF∥EM,又EM平面PEC,AF平面PEC,∴AF∥平面PEC. ………………………………………(4分)

    (2)以A為坐標(biāo)原點(diǎn),分別以所在直線為x、y、z

    軸建立坐標(biāo)系. ∵PA⊥平面ABCD,CD⊥AD,∴CD⊥PD,

    ∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°. ……(6分)

    ∴A(0, 0, 0), P(0, 0, 2), D(0, 2, 0), F(0, 1, 1), E, C(3, 2, 0),

    設(shè)平面PCE的法向量為=(x, y, z),則,,而=(-,0,2),

    =(,2,0),∴-x+2z=0,且x+2y=0,解得y=-x,z=x. 取x=4

    =(4, -3, 3),………………………………………………………………(10分)

    =(0,1,-1),

    故點(diǎn)F到平面PCE的距離為d=.…………(12分)

     

    20.

     解:1)函數(shù).又,故為第一象限角,且.

       函數(shù)圖像的一條對稱軸方程式是: c為半點(diǎn)焦距,

       由知橢圓C的方程可化為

                                 (1)

       又焦點(diǎn)F的坐標(biāo)為(),AB所在的直線方程為

                                   (2)                     (2分)

      (2)代入(1)展開整理得

                          (3)

       設(shè)A(),B(),弦AB的中點(diǎn)N(),則是方程(3)的兩個(gè)不等的實(shí)數(shù)根,由韋達(dá)定理得

                           (4)

          

            

             即為所求。                    (5分)

    2)是平面內(nèi)的兩個(gè)不共線的向量,由平面向量基本定理,對于這一平面內(nèi)的向量,有且只有一對實(shí)數(shù)使得等式成立。設(shè)由1)中各點(diǎn)的坐標(biāo)可得:

    又點(diǎn)在橢圓上,代入(1)式得

         

    化為:        (5)

       由(2)和(4)式得

       兩點(diǎn)在橢圓上,故1有入(5)式化簡得:

                   

    得到是唯一確定的實(shí)數(shù),且,故存在角,使成立,則有

    ,則存在角使等式成立;若于是用代換,同樣證得存在角使等式:成立.

    綜合上述,對于任意一點(diǎn),總存在角使等式:成立.

                                                                         (12分)

    21.解:(Ⅰ)  

    所以函數(shù)上是單調(diào)減函數(shù). …………………………4分

     (Ⅱ) 證明:據(jù)題意x1<x2<x3,

    由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=…………………………6分

    …………………8分

    即ㄓ是鈍角三角形……………………………………..9分

    (Ⅲ) 假設(shè)ㄓ為等腰三角形,則只能是

     

     

     

      ①          …………………………………………

    而事實(shí)上,    ②

    由于,故(2)式等號不成立.這與式矛盾. 所以ㄓ不可能為等腰三角形..13分

     

    22.

    解:⑴∵,又,為遞增數(shù)列即為,

    當(dāng)時(shí),恒成立,當(dāng)時(shí),的最大值為! !郻的取值范圍是:                   (6分)

    ⑵     ①又       ②

    ①-②:

    ,

    當(dāng)時(shí),有成立,

    同號,于是由遞推關(guān)系得同號,因此只要就可推導(dǎo)。又

    ,又    ,

    即首項(xiàng)的取值范圍是

                                                                          (13分)


    同步練習(xí)冊答案