亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    所以G.從而 .因為 查看更多

     

    題目列表(包括答案和解析)

    請閱讀下列材料:對命題“若兩個正實數(shù)a1,a2滿足a12+a22=1,那么數(shù)學公式.”
    證明如下:構造函數(shù)f(x)=(x-a12+(x-a22,因為對一切實數(shù)x,恒有f(x)≥0,
    又f(x)=2x2-2(a1+a2)x+1,從而得4(a1+a22-8≤0,所以數(shù)學公式
    根據(jù)上述證明方法,若n個正實數(shù)滿足a12+a22+…+an2=1時,你可以構造函數(shù)g(x)=________,進一步能得到的結論為________.(不必證明)

    查看答案和解析>>

    請閱讀下列材料:對命題“若兩個正實數(shù)a1,a2滿足a12+a22=1,那么.”
    證明如下:構造函數(shù)f(x)=(x-a12+(x-a22,因為對一切實數(shù)x,恒有f(x)≥0,
    又f(x)=2x2-2(a1+a2)x+1,從而得4(a1+a22-8≤0,所以
    根據(jù)上述證明方法,若n個正實數(shù)滿足a12+a22+…+an2=1時,你可以構造函數(shù)g(x)=    ,進一步能得到的結論為    .(不必證明)

    查看答案和解析>>

    請閱讀下列材料:對命題“若兩個正實數(shù)a1,a2滿足a12+a22=1,那么a1+a2
    2
    .”證明如下:構造函數(shù)f(x)=(x-a12+(x-a22,因為對一切實數(shù)x,恒有f(x)≥0,又f(x)=2x2-2(a1+a2)x+1,從而得4(a1+a22-8≤0,所以a1+a2
    2
    .根據(jù)上述證明方法,若n個正實數(shù)滿足a12+a22+…+an2=1時,你可以構造函數(shù)g(x)=
     
    ,進一步能得到的結論為
     
    .(不必證明)

    查看答案和解析>>

    已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

    (1)求f(x)的解析式;

    (2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

    【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

    (2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

    然后利用g(x)=-2x3+6x2-6函數(shù)求導數(shù),判定單調性,從而得到要是有三解,則需要滿足-6<m<2

    解:(1)f′(x)=3ax2+2bx+c

    依題意

    又f′(0)=-3

    ∴c=-3 ∴a=1 ∴f(x)=x3-3x

    (2)設切點為(x0,x03-3x0),

    ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

    ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

    又切線過點A(2,m)

    ∴m-(x03-3x0)=(3x02-3)(2-x0)

    ∴m=-2x03+6x02-6

    令g(x)=-2x3+6x2-6

    則g′(x)=-6x2+12x=-6x(x-2)

    由g′(x)=0得x=0或x=2

    ∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.

    ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

    畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,

    所以m的取值范圍是(-6,2).

     

    查看答案和解析>>


    同步練習冊答案